1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签。

在Convolution Layer里,图像保持原样,依旧是32*32*3,把它和一个5*5*3的filter进行卷积运算(filter和原图像有相同的通道数,比如这里都是3)。这里的“卷积”并不是严格按照信号处理里先把图像翻转,这里只是对应像素乘积累加,可以按照fully connected layer的写法,把5*5*3的filter展开成75*1,原图像也抠出同样大小的一块并展开成一维,然后线性运算wTx+b。如此运算后,最终得到28*28*1的结果(32-5+1=28),名字叫activation map。每一个filter实际代表一种特征,通过卷积查看原图的各个局部位置与这个特征的匹配程度。实际处理中会用好多个不同的filter,如果用了6个,则得到28*28*6的“新图像”。卷积是线性运算,所以之后还要再跟一个非线性的激活函数(比如ReLU)。几个卷积层之后,还会再用一个POOL(池化层:池化层的输入一般来源于上一个卷积层,主要作用是增强鲁棒性,并且减少了参数的数量,防止过拟合现象的发生)。

卷积神经网络实际就是一系列的类似卷积层的堆叠。从底层到高层的卷积层对应的特征越来越复杂。

2. 上一部分的卷积过程是每次平移一个像素(stride=1),可以移动几个像素,最终输出大小是(N-F)/stride+1,这里假设图像是N*N,filter是F*F。输出大小必须是整数,如果不是的话,stride就不能取这个数。

还有两个问题:1)每次卷积会缩小图片,对于卷积层很多的深度学习网络,图片会很快缩的非常小。2)丢失了边缘信息。为了解决这个问题,实际操作中,会在图像周边补0,这时候输出大小是(N+2*P-F)/stride+1,这里P是两边各补的0的个数。

总结一下:

输入图片大小是W1*H1*D1

Hyperparameters:1)filter的数量K,一般取2的指数个,比如32,64,128,512。

2)filter的大小F,一般取1,3,5。(边长为1的filter是有意义的,因为这相当于是对每个像素的各个通道加权求和。)

3)步长stride S,一般取1,2。stride有降低图片分辨率的作用,或者说降采样。

4)单边补零的个数P。

输出图片大小是W2*H2*D2:

1)W2=(W1-F+2P)/S+1.

2)H2=(H1-F+2P)/S+1.

3)D2=K。

一共F*F*D1*K个权重参数,K个bias参数。

3. Pooling Layer:对图片降采样。

最常用的是Max pooling:降采样时取一个小区域里的最大值。可以这么直观理解,比如我们想在一个小区域里找某个特征,这个小区域内任何一处的值很高,都代表我们在这个小区域找到了这个特征,所以用它来表征这个区域。

卷积过程的步长stride大于1和pooling都是为了降采样,二者并不是必须有的,根据实际问题调整架构。

总结一下:

输入图片大小是W1*H1*D1

Hyperparameters:1)pooling的大小F,一般取2,3。

2)步长stride S,一般取2。

输出图片大小是W2*H2*D2:

1)W2=(W1-F)/S+1.

2)H2=(H1-F)/S+1.

3)D2=D1

不引入新的参数,并且一般不会补0。

cs231n spring 2017 lecture5 Convolutional Neural Networks的更多相关文章

  1. cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记

    1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...

  2. cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记

    (没太听明白,下次重新听一遍) 1. Recurrent Neural Networks

  3. cs231n spring 2017 lecture10 Recurrent Neural Networks

    (没太听明白,下次重新听一遍) 1. Recurrent Neural Networks

  4. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  5. cs231n spring 2017 lecture7 Training Neural Networks II

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  6. cs231n spring 2017 lecture6 Training Neural Networks I 听课笔记

    1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...

  7. cs231n spring 2017 lecture6 Training Neural Networks I

    1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...

  8. cs231n spring 2017 lecture8 Deep Learning Networks 听课笔记

    1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1) ...

  9. CS231n笔记 Lecture 5 Convolutional Neural Networks

    一些ConvNets的应用 Face recognition 输入人脸,推测是谁 Video classfication Recognition 识别身体的部位, 医学图像, 星空, 标志牌, 鲸.. ...

随机推荐

  1. (函数)P1217 [USACO1.5]回文质数 Prime Palindromes

    题解: 第一次: 算法复杂度过高,导致编译超时,需要优化 #include<stdio.h>#include<math.h>int a[100000001] = { 0 };i ...

  2. h5与安卓、ios交互

    1.安卓交互 h5调用安卓方法 window.webview.xxx() 安卓调用h5方法, 方法需要在全局注册 window['showUnreadMsg'] = () => { this.$ ...

  3. awk中传参方式

    结合编辑数据文件的shell脚本学习awk传参方式,该脚本功能: a.取VIDEOUSR_11082017_0102_ONLINE_STASTIC.dat文件中第87个字段的低8位: b.将每行数据的 ...

  4. [LuoguP3978](https://www.luogu.org/problem/P3978) BZOJ4001概率论

    BZOJ 4001 概率论 设\(f_i\)表示i个点的二叉树方案数 立刻有\(f_n = \sum_{i=0}^{n-1} f_i f_{n-i-1}\) 设\(F(x)为序列f的生成函数,有F(x ...

  5. rename 修改文件名

    Linux的 rename 命令有两个版本,一个是C语言版本的,一个是Perl语言版本的,早期的Linux发行版基本上使用的是C语言版本的,现在已经很难见到C语言版本的了,由于历史原因,在Perl语言 ...

  6. 移植zlib

    平台说明 开发平台:Ubuntu12.04 编 译器:arm-linux-gcc version 4.4.4 (4.4.4_09.06.2010) Zlib源码包:zlib-1.2.11.tar.gz ...

  7. spring学习之spring入门

    一 spring的基础 1:什么是spring spring是由Rod Johnson组织和开发的一个分层 的Java SE/EE 一站式轻量级开源框架,它以Ioc(控制反转)和 AOP(面向切面编程 ...

  8. ZJNU 1269 - 灯塔——高级

    根据题目输入可以得到一个有向图 信号可以根据有向图的传递性传递,因此可以说是找到这个有向图的所有父亲即可 但又要考虑可能会出现环这类情况 所以跑一遍强连通分量模板,再根据分块后的图找到入度为0的块,把 ...

  9. tensorflow从训练自定义CNN网络模型到Android端部署tflite

    网上有很多关于tensorflow lite在安卓端部署的教程,但是大多只讲如何把训练好的模型部署到安卓端,不讲如何训练,而实际上在部署的时候,需要知道训练模型时预处理的细节,这就导致了自己训练的模型 ...

  10. BBS配置

    BBS配置 一.url路由 """BBS URL Configuration The `urlpatterns` list routes URLs to views. F ...