tf.contrib.legacy_seq2seq.basic_rnn_seq2seq 函数 example 最简单实现

函数文档:https://www.tensorflow.org/api_docs/python/tf/contrib/legacy_seq2seq/basic_rnn_seq2seq

import tensorflow as tf
import numpy as np steps=10
batch_size=10
input_size=10 encoder_inputs = tf.placeholder("float", [None, steps, input_size])
decoder_inputs = tf.placeholder("float", [None, steps, input_size]) en_input=np.zeros(shape=[steps,batch_size,input_size])
de_input=np.zeros(shape=[steps,batch_size,input_size]) cell=tf.nn.rnn_cell.BasicLSTMCell(10) def get_result(encoder_inputs,decoder_inputs,cell):
encoder_inputs=tf.unstack(encoder_inputs,axis=1)
decoder_inputs=tf.unstack(decoder_inputs,axis=1)
result=tf.contrib.legacy_seq2seq.basic_rnn_seq2seq(
encoder_inputs,
decoder_inputs,
cell,
dtype=tf.float32,
scope=None
)
return result
result=get_result(encoder_inputs,decoder_inputs,cell) init=tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
result_value=sess.run(result,feed_dict={encoder_inputs:en_input,decoder_inputs:de_input})
print(result_value)

http://www.tensorflownews.com/

tf.contrib.legacy_seq2seq.basic_rnn_seq2seq 函数 example 最简单实现的更多相关文章

  1. 第十六节,使用函数封装库tf.contrib.layers

    这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的很多函数的高级封装,使用这个高级库来开发程序将会提高效率. 我们改写第十三节的程序,卷积函数我们使用tf.contrib.lay ...

  2. TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同

    tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...

  3. tf.contrib.seq2seq.sequence_loss example:seqence loss 实例代码

    #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np params=np.r ...

  4. tensorflow笔记3:CRF函数:tf.contrib.crf.crf_log_likelihood()

    在分析训练代码的时候,遇到了,tf.contrib.crf.crf_log_likelihood,这个函数,于是想简单理解下: 函数的目的:使用crf 来计算损失,里面用到的优化方法是:最大似然估计 ...

  5. 学习笔记TF044:TF.Contrib组件、统计分布、Layer、性能分析器tfprof

    TF.Contrib,开源社区贡献,新功能,内外部测试,根据反馈意见改进性能,改善API友好度,API稳定后,移到TensorFlow核心模块.生产代码,以最新官方教程和API指南参考. 统计分布.T ...

  6. TensorFlow高级API(tf.contrib.learn)及可视化工具TensorBoard的使用

    一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载cs ...

  7. tf.contrib.learn.preprocessing.VocabularyProcessor()

    tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length, min_frequency=0, vocabulary ...

  8. TensorFlow——tf.contrib.layers库中的相关API

    在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函 ...

  9. 深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)

    问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse)  # 构建 ...

随机推荐

  1. 笔记: SpringBoot + VUE实现数据字典展示功能

    最近一直在写前端,写得我贼难受,从能看懂一些基础的代码到整个前端框架撸下来鬼知道我经历了啥(:´д`)ゞ 项目中所用到的下拉菜单的值全部都是有数据库中的数据字典表来提供的,显示给用户的是的清晰的意思, ...

  2. 使用Lucene.Net做一个简单的搜索引擎-全文索引

    Lucene.Net Lucene.net是Lucene的.net移植版本,是一个开源的全文检索引擎开发包,即它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎. ...

  3. CSS定位属性position相关介绍

    position属性用来定义元素的定位方式. 定位相关属性值 1.static 默认值 2.absolute 绝对定位 3.fixed 固定定位 4.relative 相对定位 5.sticky 粘性 ...

  4. React类型检查

    类型检查 import PropTypes from 'prop-types' 类名==List List.propTypes = { list: PropTypes.array } // 默认值 L ...

  5. 正式学习MVC 05

    1.剃须刀模板razor的使用 1)混编 循环语法 @model List<MVCStudy.Models.Student> @{ ViewBag.Title = "List&q ...

  6. 后台管理遇到的坑一、style中css样式怎么传入变量值

    第一.给标签定义style变量 第二.在data中定义 第三.在methods中的方法中给样式赋值

  7. 对javaweb项目中web.xml重用配置的理解(个人学习小结)

    <!-- 所有的总结描述性与语言都在注释中 --><?xml version="1.0" encoding="UTF-8"?> < ...

  8. 【小程序】---- input获得焦点时placeholder重影BUG

    问题小程序的input组件有个自身的bug,即当输入框获取焦点时placeholder内容会出现重影现象. 解决思路原理:将placeholder内容单独写在另外的标签里,控制其显示隐藏.操作:将代表 ...

  9. Sublime text 3 运行python3

    要在Sublime text3编译器中成功运行 python3,需要在编译器设置中将python3添加至编译器中 新建编译系统 编辑弹出的文件,添加如下内容: { "cmd":[& ...

  10. 安装部署hyperledger fabric1.0

    安装环境 CentOS7 1.安装Docker Docker Hub在国外,安装会较慢,可用国内镜像DaoCloud.可执行以下命令安装Docker. sudo yum install -y yum- ...