一致性哈希算法与Java实现
原文:http://blog.csdn.net/wuhuan_wp/article/details/7010071
一致性哈希算法是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。
因此,引入了一致性哈希算法:
把数据用hash函数(如MD5),映射到一个很大的空间里,如图所示。数据的存储时,先得到一个hash值,对应到这个环中的每个位置,如k1对应到了图中所示的位置,然后沿顺时针找到一个机器节点B,将k1存储到B这个节点中。
如果B节点宕机了,则B上的数据就会落到C节点上,如下图所示:
这样,只会影响C节点,对其他的节点A,D的数据不会造成影响。然而,这又会造成一个“雪崩”的情况,即C节点由于承担了B节点的数据,所以C节点的负载会变高,C节点很容易也宕机,这样依次下去,这样造成整个集群都挂了。
为此,引入了“虚拟节点”的概念:即把想象在这个环上有很多“虚拟节点”,数据的存储是沿着环的顺时针方向找一个虚拟节点,每个虚拟节点都会关联到一个真实节点,如下图所使用:
图中的A1、A2、B1、B2、C1、C2、D1、D2都是虚拟节点,机器A负载存储A1、A2的数据,机器B负载存储B1、B2的数据,机器C负载存储C1、C2的数据。由于这些虚拟节点数量很多,均匀分布,因此不会造成“雪崩”现象。
public class Shard<S> { // S类封装了机器节点的信息 ,如name、password、ip、port等 private TreeMap<Long, S> nodes; // 虚拟节点
private List<S> shards; // 真实机器节点
private final int NODE_NUM = 100; // 每个机器节点关联的虚拟节点个数 public Shard(List<S> shards) {
super();
this.shards = shards;
init();
} private void init() { // 初始化一致性hash环
nodes = new TreeMap<Long, S>();
for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点
final S shardInfo = shards.get(i); for (int n = 0; n < NODE_NUM; n++)
// 一个真实机器节点关联NODE_NUM个虚拟节点
nodes.put(hash("SHARD-" + i + "-NODE-" + n), shardInfo); }
} public S getShardInfo(String key) {
SortedMap<Long, S> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点
if (tail.size() == 0) {
return nodes.get(nodes.firstKey());
}
return tail.get(tail.firstKey()); // 返回该虚拟节点对应的真实机器节点的信息
} /**
* MurMurHash算法,是非加密HASH算法,性能很高,
* 比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免)
* 等HASH算法要快很多,而且据说这个算法的碰撞率很低.
* http://murmurhash.googlepages.com/
*/
private Long hash(String key) { ByteBuffer buf = ByteBuffer.wrap(key.getBytes());
int seed = 0x1234ABCD; ByteOrder byteOrder = buf.order();
buf.order(ByteOrder.LITTLE_ENDIAN); long m = 0xc6a4a7935bd1e995L;
int r = 47; long h = seed ^ (buf.remaining() * m); long k;
while (buf.remaining() >= 8) {
k = buf.getLong(); k *= m;
k ^= k >>> r;
k *= m; h ^= k;
h *= m;
} if (buf.remaining() > 0) {
ByteBuffer finish = ByteBuffer.allocate(8).order(
ByteOrder.LITTLE_ENDIAN);
// for big-endian version, do this first:
// finish.position(8-buf.remaining());
finish.put(buf).rewind();
h ^= finish.getLong();
h *= m;
} h ^= h >>> r;
h *= m;
h ^= h >>> r; buf.order(byteOrder);
return h;
} }
其他资料
五分钟理解一致性哈希算法(consistent hashing)
一致性哈希算法与Java实现的更多相关文章
- Java_一致性哈希算法与Java实现
摘自:http://blog.csdn.net/wuhuan_wp/article/details/7010071 一致性哈希算法是分布式系统中常用的算法.比如,一个分布式的存储系统,要将数据存储到具 ...
- 负载均衡-基础-一致性哈希算法及java实现
一致性hash算法,参考: http://www.blogjava.net/hello-yun/archive/2012/10/10/389289.html 针对这篇文章,加入了自己的理解,在原有的代 ...
- 一致性哈希算法(consistent hashing)(转)
原文链接:每天进步一点点——五分钟理解一致性哈希算法(consistent hashing) 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网 ...
- 一致性哈希算法学习及JAVA代码实现分析
1,对于待存储的海量数据,如何将它们分配到各个机器中去?---数据分片与路由 当数据量很大时,通过改善单机硬件资源的纵向扩充方式来存储数据变得越来越不适用,而通过增加机器数目来获得水平横向扩展的方式则 ...
- 一致性哈希算法原理及Java实现
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单 ...
- 一致性哈希算法原理、避免数据热点方法及Java实现
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单 ...
- 一致性哈希算法——算法解决的核心问题是当slot数发生变化时,能够尽量少的移动数据
一致性哈希算法 摘自:http://blog.codinglabs.org/articles/consistent-hashing.html 算法简述 一致性哈希算法(Consistent Hashi ...
- _00013 一致性哈希算法 Consistent Hashing 新的讨论,并出现相应的解决
笔者博文:妳那伊抹微笑 博客地址:http://blog.csdn.net/u012185296 个性签名:世界上最遥远的距离不是天涯,也不是海角,而是我站在妳的面前.妳却感觉不到我的存在 技术方向: ...
- 一致性哈希算法(Consistent Hashing) .
应用场景 这里我先描述一个极其简单的业务场景:用4台Cache服务器缓存所有Object. 那么我将如何把一个Object映射至对应的Cache服务器呢?最简单的方法设置缓存规则:object.has ...
随机推荐
- SQL Server基础之存储过程
简单来说,存储过程就是一条或者多条sql语句的集合,可视为批处理文件,但是其作用不仅限于批处理.本篇主要介绍变量的使用,存储过程和存储函数的创建,调用,查看,修改以及删除操作. 一:存储过程概述 ...
- JAVA keytool 使用详解
Keytool是一个Java数据证书的管理工具 ,Keytool将密钥(key)和证书(certificates)存在一个称为keystore的文件中在keystore里,包含两种数据: 密钥实体 ...
- 【Win10开发】处理PC上的后退键
我们知道在win10手机上和平板上都会有后退键,那么PC上该怎么办呢?没关系我们慢慢揭晓. 如果你已经是UWP的忠实用户,那么肯定会见到如下的后退键. 那么我们如何来做出来呢?, 我们首先打开App. ...
- de4dot3.14更新文件打包下载
刚发现de4dot更新了,虽然只是10月份的文件更新,并未发布新的release,但好多人还不会编译... 关于de4dot有何功能就不再讲了. 本文主要提供编译通过后的打包文件下载. 首先下载de4 ...
- EC笔记,第二部分:10.让=返回指向*this的引用
Effective C++ 学习笔记 10 让=返回指向*this的引用 Table of Contents 1. 原因 2. 建议:在没有充分理由标新立异前,最好的做法是遵从传统. –by SkyF ...
- TensorFlow知识总结
学习资料: 英文官方网站 Tensorflow 将要写的博客目录: 1.使用Spring AOP对异常进行统一处理 2.动态代理模式理解 aop中的动态代理模式 3.工厂模式三种的理解.logger ...
- 判别或预测方法汇总(判别分析、神经网络、支持向量机SVM等)
%% [Input]:s_train(输入样本数据,行数为样本数,列为维数):s_group(训练样本类别):s_sample(待判别数据)%% [Output]:Cla(预测类别) function ...
- Netty(三)TCP粘包拆包处理
tcp是一个“流”的协议,一个完整的包可能会被TCP拆分成多个包进行发送,也可能把小的封装成一个大的数据包发送,这就是所谓的TCP粘包和拆包问题. 粘包.拆包问题说明 假设客户端分别发送数据包D1和D ...
- jquery实现多级下拉菜单
支持多种浏览器,体验效果:http://keleyi.com/keleyi/phtml/jqmenu/4.htm 多级菜单,理论上支持无限多的层级,文件结构非常简单的,以下是完整代码: <!DO ...
- (转)TortoiseSVN与VisualSVN Server搭建SVN版本控制系统
本片主要介绍如何搭建SVN版本控制系统,主要使用工具: 1 客户端:TortoiseSVN (小乌龟) 2 服务端:VisualSVN Server 搭建出图形化管理,以及右键菜单版本控制管理的SVN ...