强掠计划

题目大意:

\(Siruseri\) 城中的道路都是单向的。不同的道路由路口连接。按照法律的规定,在每个路口都设立了一个 \(Siruseri\) 银行的 \(ATM\) 取款机。令人奇怪的是, \(Siruseri\) 的酒吧也都设在路口,虽然并不是每个路口都设有酒吧。

\(Banditji\) 计划实施 \(Siruseri\) 有史以来最惊天动地的 抢劫。他将从市中心出发,沿着单向道路行驶,抢劫所有他途径的 \(ATM\) 机,最终他将在一个酒吧庆祝他的胜利。

使用高超的黑客技术,他获知了每个 \(ATM\) 机中可以掠取的现金数额。他希望你帮助他计算从市中心出发最后到达某个酒吧时最多能抢劫的现金总数。他可以经过同一路口或道路任意多次。但只要他抢劫过某个 \(ATM\) 机后,该 \(ATM\) 机里面就不会再有钱了。 例如,假设该城中有 \(6\) 个路口,道路的连接情况如下图所示:

市中心在路口 \(1\) ,由一个入口符号 \(→\) 来标识,那些有酒吧的路口用双圈来表示。每个 \(ATM\) 机中可取的钱数标在了路口的上方。在这个例子中, \(Banditji\) 能抢劫的现金总数为 \(47\),实施的抢劫路线是:\(1-2-4-1-2-3-5\)。

输入格式

第一行包含两个整数 \(N,M\)。\(N\) 表示路口的个数,\(M\) 表示道路条数。

接下来 \(M\) 行,每行两个整数,这两个整数都在 \(1\) 到 \(N\) 之间,第 \(i+1\) 行的两个整数表示第 \(i\) 条道路的起点和终点的路口编号。

接下来 \(N\) 行,每行一个整数,按顺序表示每个路口处的 \(ATM\) 机中的钱数 \(ai\)​。

接下来一行包含两个整数 \(S,P\),\(S\) 表示市中心的编号,也就是出发的路口。\(P\) 表示酒吧数目。

接下来的一行中有 \(P\) 个整数,表示 \(P\) 个有酒吧的路口的编号。

输出格式

输出一个整数,表示 Banditji 从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。

输入输出样例

输入

6 7
1 2
2 3
3 5
2 4
4 1
2 6
6 5
10
12
8
16
1
5
1 4
4 3 5 6

输出

47

题目思路:

这道题的主要思路就是tarjan先预处理一下。就这个例子说,我们可以看到1,2,4形成了一个权环,于是便可以把他们三个缩成一个点,然后再把原有的边连起来,然后求一个从开始的点开始的单源spfa,最后枚举酒吧的钱数求最大值。思路很清晰,缩点+spfa,主要还是看模板打的熟不熟练了。

废话不多说,上代码

#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int Maxx = 1e7 + 10, INF = 0x3f3f3f3f; int n, m;
int len, Head[Maxx], To[Maxx], from[Maxx], path[Maxx], t[Maxx];//cun
int len_, H[Maxx];
int low[Maxx], dfn[Maxx], stk[Maxx], top, num, belong[Maxx], cnt;//tarjan
long long w[Maxx];
bool vis[Maxx];
long long dis[Maxx]; struct Edge {
int to, next;
} edge[Maxx], E[Maxx]; void addedge1(int a, int b) {
edge[++len].to = b;
edge[len].next = Head[a];
Head[a] = len;
}
void addedge2(int a, int b) {
E[++len_].to = b;
E[len_].next = H[a];
H[a] = len_;
} void tarjan(int u) {
low[u] = dfn[u] = ++num;
stk[++top] = u;
for (int x = Head[u]; x; x = edge[x].next) {
int v = edge[x].to;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (!belong[v])
low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u]) {
++cnt;
while (1) {
int x = stk[top--];
belong[x] = cnt;
w[cnt] += path[x];
if (x == u) break;
}
}
} void spfa(int s, int n) {
queue<int> que;
for (int i = 1; i <= n; i++) dis[i] = -INF, vis[i] = 0;
dis[s] = w[s];
que.push(s);
vis[s] = 1;
while (!que.empty()) {
int u = que.front();
que.pop();
vis[u] = 0;
for (int i = H[u]; i; i = E[i].next) {
int v = E[i].to;
if (dis[v] < dis[u] + w[v]) {
dis[v] = dis[u] + w[v];
if (!vis[v]) {
que.push(v);
vis[v] = 1;
}
}
}
}
} void solve(){
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &from[i], &To[i]);
addedge1(from[i], To[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%d", &path[i]);
}
int s, P;
for (int i = 1; i <= n; i++)
if (!dfn[i]) tarjan(i); scanf("%d%d", &s, &P);
s = belong[s];
int ansnum = 0;
for (int i = 1; i <= P; i++) {
int a;
scanf("%d", &a);
if (!vis[belong[a]]) {
t[++ansnum] = belong[a];
vis[belong[a]] = 1;
}
}
for (int i = 1; i <= m; i++) {
int u = belong[from[i]], v = belong[To[i]];
if (u != v) addedge2(u, v);
}
spfa(s, cnt);
long long ans = -INF;
for (int i = 1; i <= ansnum; i++) {
ans = max(ans, dis[t[i]]);
}
printf("%lld", ans);
} int main(){
solve();
return 0;
}

谢谢观看

APIO强掠计划(spfa+tarjan缩点)的更多相关文章

  1. Tarjan缩点+Spfa最长路【p3627】[APIO2009] 抢掠计划

    Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri 银行的 ATM 取款机.令人奇怪的是,Siruseri ...

  2. 洛谷 P3627 [APIO2009]抢掠计划 Tarjan缩点+Spfa求最长路

    题目地址:https://www.luogu.com.cn/problem/P3627 第一次寒假训练的结测题,思路本身不难,但对于我这个码力蒟蒻来说实现难度不小-考试时肛了将近两个半小时才刚肛出来. ...

  3. [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA

    考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...

  4. 【bzoj1179】[Apio2009]Atm Tarjan缩点+Spfa最长路

    题目描述 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每 ...

  5. [BZOJ1179] [Apio2009]Atm(tarjan缩点 + spfa)

    传送门 题意 N个点M条边的有向图 每个点有点权 从某一个结点出发 问能获得的最大点权和 一个点的点权最多被计算一次 N<=500000 M<=500000 思路 先tarjan缩点,然后 ...

  6. 强连通分量tarjan缩点——POJ2186 Popular Cows

    这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...

  7. UVA 11324.The Largest Clique tarjan缩点+拓扑dp

    题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...

  8. Tarjan&&缩点简析

    由于昨天写计蒜客初赛的一道题,看出了是缩点,但一时忘记了另外一个叫什么s...的算法怎么写了,话说我为什么没有回去翻一下自己的blog然后今天就去学了更实用也更强力的Tarjan Tarjan的思想其 ...

  9. [HAOI2006]受欢迎的牛 tarjan缩点 + 拓扑排序

    ---题面--- 题解: 首先tarjan缩点应该还是容易想到的,因为喜爱具有传递性,所以一个强联通分量里面的点实际上是全部等效的,所以我们可以缩成一个方便判断, 缩完点之后整张图就变成了一个有向无环 ...

随机推荐

  1. 【Jquery】根据元素个数给予宽度

    方法一: $(document).ready(function(){ $(".xn_mc_solu_2_ul").css("width", $(".x ...

  2. https://www.cnblogs.com/mrchige/p/6409444.html

    https://www.cnblogs.com/mrchige/p/6409444.html http://c.biancheng.net/view/2172.html https://www.cnb ...

  3. .Net Core 配置之long类型 前端精度丢失和时间格式设置

    在很多项目中,都采用的前后端分离的方式进行开发,经常遇到后台的long精度的数据到前端丢失不准确,显示效果为long类型(19位)的后几位为000,此时需要对long的字段进行设置,改变默认的返回类型 ...

  4. 我们是如何做DevOps的?

    一.DevOps的理解 DevOps的概念理解 DevOps 的概念在软件开发行业中逐渐流行起来.越来越多的团队希望实现产品的敏捷开发,DevOps 使一切成为可能.有了 DevOps ,团队可以定期 ...

  5. Java 中队列同步器 AQS(AbstractQueuedSynchronizer)实现原理

    前言 在 Java 中通过锁来控制多个线程对共享资源的访问,使用 Java 编程语言开发的朋友都知道,可以通过 synchronized 关键字来实现锁的功能,它可以隐式的获取锁,也就是说我们使用该关 ...

  6. vs2010静态编译qt5.1.0

    本博文参考 http://blog.chinaunix.net/uid-20690340-id-3802197.html 静态库在链接的时候直接写入二进制文件里,这样的好处在于发布的时候无需附带dll ...

  7. 64位手机无法加载x5(libmttwebview.so is 32-bit instead of 64-bit)

    x5内核暂时不提供64位的so文件,在64位手机上需要让AP以32位模式运行. 具体操作如下: 1.如果使用是Eclipse则需要将所有的.so文件都放置在so加载目录:lib/armeabi文件夹下 ...

  8. 学习nginx从入门到实践(四) 基础知识之nginx基本配置语法

    nginx基本配置语法 1.http相关 展示每次请求的请求头: curl -v http://www.baidu.com 2.nginx日志类型 error.log. access.log log_ ...

  9. 开窗函数_ROW_NUMBER() / RANK() / DENSE_RANK() / NTILE() ------4个排名函数训练_1

    排名函数(训练,其实从SQL2005时就已经被引入) /*SQL Server 2012从零开始学_7.8  排序函数*/ --DROP TABLE fruits GO Create table fr ...

  10. Charles抓包1-Charles安装汉化(附正版注册码)

    目录 1.下载&&安装 2.汉化 1.下载&&安装 charles官网 charles下载 下载后直接安装即可. 2.汉化 下载提供的汉化包charles.jar(加群 ...