参考博客:https://www.cnblogs.com/wenzhixin/p/9714760.html

预处理时间复杂度是O(nlogn),代码如下:

 void init(const vector<int>& A) {
int n = A.size();
for(int i = ; i < n; i++) {
d[i][] = A[i];//以i开头,长度为1的最小值是A[i]
} for(int j = ; ( << j) <= n; j++) {//再区间范围内枚举次方
for(int i = ; i + ( << j) - < n; i++) {//枚举每一个开头,直到没有长度为2的j的区间
d[i][j] = min(d[i][j - ], d[i + ( << j) - ][j - ]);
}
}
}

查询是常数复杂度,这是RMQ的一大优点,相对于线段树的O(logn)复杂度有很大改进。查询的时候先给出最大的k s.t. 2^k<=R-L+1。代码如下:

 int query(int L, int R) {
int k = ;
while(( << (k + )) <= R - L + ) k++;//若2的k+1次方<= R - L + 1,则k还可以加1
return min(d[L][k], d[R - ( << k) + ][k]);
}

RMQ Tarjan的Sparse-Table算法的更多相关文章

  1. RMQ ---- ST(Sparse Table)算法

    [概述]      RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返 ...

  2. codeforce 359D 二分+ 动态规划(sparse table)

    原题链接:http://codeforces.com/problemset/problem/359/D 思路:首先对符合题目的长度(r-l)从0到n-1进行二分查找,对每一个长度进行check,看是否 ...

  3. RMQ(ST(Sparse Table))(转载)

    1. 概述 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A ...

  4. 一维二维Sparse Table

    写在前面: 记录了个人的学习过程,同时方便复习 Sparse Table 有些情况,需要反复读取某个指定范围内的值而不需要修改 逐个判断区间内的每个值显然太浪费时间 我们希望用空间换取时间 ST表就是 ...

  5. 【图论】tarjan的离线LCA算法

    百度百科 Definition&Solution 对于求树上\(u\)和\(v\)两点的LCA,使用在线倍增可以做到\(O(nlogn)\)的复杂度.在NOIP这种毒瘤卡常比赛中,为了代码的效 ...

  6. tarjan算法和Kosaraju算法

    tarjan算法和Kosaraju算法是求有向图的强连通分量的算法: #include<iostream> #include<cstring> using namespace ...

  7. 算法详解(LCA&RMQ&tarjan)补坑啦!完结撒花(。◕ˇ∀ˇ◕)

    首先,众所周知,求LCA共有3种算法(树剖就不说了,太高级,以后再学..). 1.树上倍增(ST表优化) 2.RMQ&时间戳(ST表优化) 3.tarjan(离线算法)不讲..(后面补坑啦!) ...

  8. 基于稀疏表(Sparse Table)的RMQ(区间最值问题)

    在RMQ的其他实现方法中,有一种叫做ST的算法比较常见. [构建] dp[i][j]表示的是从i起连续的2j个数xi,xi+1,xi+2,...xi+2j-1( 区间为[i,i+2j-1] )的最值. ...

  9. ST (Sparse Table:稀疏表)算法

    1541:[例 1]数列区间最大值 时间限制: 1000 ms         内存限制: 524288 KB提交数: 600     通过数: 207 [题目描述] 输入一串数字,给你 MM 个询问 ...

随机推荐

  1. react-native start 启动错误解决方法

    ERROR Error watching file for changes: EMFILE {"code":"EMFILE","errno" ...

  2. MongoDB启动.mongorc.js报错解决方法

    在bin目录下输入./mongo --norc 不去加载.mongorc.js

  3. 通过ELK快速搭建集中化日志平台

    ELK就是ElasticSearch + LogStash + Kibana 1.准备工作 ELK下载:https://www.elastic.co/downloads/ jdk version:1. ...

  4. Selenium&Pytesseract模拟登录+验证码识别

    验证码是爬虫需要解决的问题,因为很多网站的数据是需要登录成功后才可以获取的. 验证码识别,即图片识别,很多人都有误区,觉得这是爬虫方面的知识,其实是不对的. 验证码识别涉及到的知识:人工智能,模式识别 ...

  5. marquee上下无缝滚动

    <!DOCTYPE html><html><head><meta charset="utf-8"><meta name=&qu ...

  6. AAAI 2020论文分享:通过识别和翻译交互打造更优的语音翻译模型

    2月初,AAAI 2020在美国纽约拉开了帷幕.本届大会百度共有28篇论文被收录.本文将对其中的机器翻译领域入选论文<Synchronous Speech Recognition and Spe ...

  7. ITT Corporation之“中国战略”

    前言:众所周知,中国已经成为全世界第二大经济体,并且坐拥14亿人口的庞大市场,蕴藏着巨大的市场机遇,海外高科技企业想法获得长足的发展重视和开拓中国市场成为重中之重,诸如特斯拉,google,苹果等,近 ...

  8. [红日安全]Web安全Day9 - 文件下载漏洞实战攻防

    本文由红日安全成员: Once 编写,如有不当,还望斧正. 大家好,我们是红日安全-Web安全攻防小组.此项目是关于Web安全的系列文章分享,还包含一个HTB靶场供大家练习,我们给这个项目起了一个名字 ...

  9. docker 学习(四)

    1.Dockerfile简介 1)什么是Dockerfile Dockerfile是一个包含用于组合映像的命令的文本文档.可以使用在命令行中调用任何命令. Docker通过读取Dockerfile中的 ...

  10. A. New Building for SIS Codeforce

    You are looking at the floor plan of the Summer Informatics School's new building. You were tasked w ...