Reshapeing operations

Suppose we have the following tensor:

t = torch.tensor([
[1,1,1,1],
[2,2,2,2],
[3,3,3,3]
], dtype=torch.float32)

We have two ways to get the shape:

> t.size()
torch.Size([3, 4]) > t.shape
torch.Size([3, 4])

The rank of a tensor is equal to the length of the tensor's shape.

> len(t.shape)
2

We can also deduce the number of elements contained within the tensor.

> torch.tensor(t.shape).prod()
tensor(12)

In PyTorch, there is a dedicated function for this:

> t.numel()
12

Reshaping a tensor in PyTorch

> t.reshape([2,6])
tensor([[1., 1., 1., 1., 2., 2.],
[2., 2., 3., 3., 3., 3.]]) > t.reshape([3,4])
tensor([[1., 1., 1., 1.],
[2., 2., 2., 2.],
[3., 3., 3., 3.]]) > t.reshape([4,3])
tensor([[1., 1., 1.],
[1., 2., 2.],
[2., 2., 3.],
[3., 3., 3.]]) > t.reshape(6,2)
tensor([[1., 1.],
[1., 1.],
[2., 2.],
[2., 2.],
[3., 3.],
[3., 3.]]) > t.reshape(12,1)
tensor([[1.],
[1.],
[1.],
[1.],
[2.],
[2.],
[2.],
[2.],
[3.],
[3.],
[3.],
[3.]])

In this example, we increase the rank to 3 :

> t.reshape(2,2,3)
tensor(
[
[
[1., 1., 1.],
[1., 2., 2.]
], [
[2., 2., 3.],
[3., 3., 3.]
]
])

Note:PyTorch has another function view() that does the same thing as the reshape().

Changing shape by squeezing and unsqueezing

These functions allow us to expand or shrink the rank (number of dimensions) of our tensor.

> print(t.reshape([1,12]))
> print(t.reshape([1,12]).shape)
tensor([[1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]])
torch.Size([1, 12]) > print(t.reshape([1,12]).squeeze())
> print(t.reshape([1,12]).squeeze().shape)
tensor([1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.])
torch.Size([12]) > print(t.reshape([1,12]).squeeze().unsqueeze(dim=0))
> print(t.reshape([1,12]).squeeze().unsqueeze(dim=0).shape)
tensor([[1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]])
torch.Size([1, 12])

Let’s look at a common use case for squeezing a tensor by building a flatten function.

Flatten a tensor

Flattening a tensor means to remove all of the dimensions except for one.

A flatten operation on a tensor reshapes the tensor to have a shape that is equal to the number of elements contained in the tensor. This is the same thing as a 1d-array of elements.

def flatten(t):
t = t.reshape(1, -1)
t = t.squeeze()
return t
> t = torch.ones(4, 3)
> t
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]) > flatten(t)
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

We'll see that flatten operations are required when passing an output tensor from a convolutional layer to a linear layer.

In these examples, we have flattened the entire tensor, however, it is possible to flatten only specific parts of a tensor. For example, suppose we have a tensor of shape [2,1,28,28] for a CNN. This means that we have a batch of 2 grayscale images with height and width dimensions of 28 x 28, respectively.

Here, we can specifically flatten the two images. To get the following shape: [2,1,784]. We could also squeeze off the channel axes to get the following shape: [2,784].

Concatenating tensors

We combine tensors using the cat() function

> t1 = torch.tensor([
[1,2],
[3,4]
])
> t2 = torch.tensor([
[5,6],
[7,8]
])

We can combine t1 and t2 row-wise (axis-0) in the following way:

> torch.cat((t1, t2), dim=0)
tensor([[1, 2],
[3, 4],
[5, 6],
[7, 8]])

We can combine them column-wise (axis-1) like this:

> torch.cat((t1, t2), dim=1)
tensor([[1, 2, 5, 6],
[3, 4, 7, 8]])

Flatten operation for a batch of image inputs to a CNN

Flattening specific axes of a tensor

We know that the tensor inputs to a convolutional neural network typically have 4 axes, one for batch size, one for color channels, and one each for height and width.

\[(Batch Size, Channels, Height, Width)
\]

To start, suppose we have the following three tensors.

t1 = torch.tensor([
[1,1,1,1],
[1,1,1,1],
[1,1,1,1],
[1,1,1,1]
]) t2 = torch.tensor([
[2,2,2,2],
[2,2,2,2],
[2,2,2,2],
[2,2,2,2]
]) t3 = torch.tensor([
[3,3,3,3],
[3,3,3,3],
[3,3,3,3],
[3,3,3,3]
])

Remember, batches are represented using a single tensor, so we’ll need to combine these three tensors into a single larger tensor that has three axes instead of 2.

> t = torch.stack((t1, t2, t3))
> t.shape torch.Size([3, 4, 4])

Here, we used the stack() function to concatenate our sequence of three tensors along a new axis.

> t
tensor([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]], [[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]], [[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]]])

All we need to do now to get this tensor into a form that a CNN expects is add an axis for the color channels. We basically have an implicit single color channel for each of these image tensors, so in practice, these would be grayscale images.

> t = t.reshape(3,1,4,4)
> t
tensor(
[
[
[
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]
]
],
[
[
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]
]
],
[
[
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]
]
]
])
Flattening the tensor batch

Here are some alternative implementations of the flatten() function.

> t.reshape(1,-1)[0]
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.reshape(-1)
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.view(t.numel())
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.flatten()
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])

This flattened batch won’t work well inside our CNN because we need individual predictions for each image within our batch tensor, and now we have a flattened mess.

The solution here, is to flatten each image while still maintaining the batch axis. This means we want to flatten only part of the tensor. We want to flatten the, color channel axis with the height and width axes.

> t.flatten(start_dim=1).shape
torch.Size([3, 16]) > t.flatten(start_dim=1)
tensor(
[
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
]
)

Reshapeing operations的更多相关文章

  1. backup, file manipulation operations (such as ALTER DATABASE ADD FILE) and encryption changes on a database must be serialized.

    昨天在检查YourSQLDba备份时,发现有台数据库做备份时出现了下面错误信息,如下所示: <Exec>   <ctx>yMaint.ShrinkLog</ctx> ...

  2. HDU 5938 Four Operations(四则运算)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  3. ios基础篇(二十九)—— 多线程(Thread、Cocoa operations和GCD)

    一.进程与线程 1.进程 进程是指在系统中正在运行的一个应用程序,每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内: 如果我们把CPU比作一个工厂,那么进程就好比工厂的车间,一个工厂有 ...

  4. OpenCascade Modeling Algorithms Boolean Operations

    Modeling Algorithms Boolean Operations of Opencascade eryar@163.com 布尔操作(Boolean Operations)是通过两个形状( ...

  5. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. mouse scrollings and zooming operations in linux & windows are opposite

    mouse scrollings and zooming operations in linux & windows are opposite. windows中, 鼠标滚动的方向是: 查看页 ...

  8. MongoDB—— 写操作 Core MongoDB Operations (CRUD)

    MongoDB使用BSON文件存储在collection中,本文主要介绍MongoDB中的写操作和优化策略. 主要有三种写操作:        Create        Update        ...

  9. MongoDB—— 读操作 Core MongoDB Operations (CRUD)

    本文主要介绍内容:从MongoDB中请求数据的不同的方法 Note:All of the examples in this document use the mongo shell interface ...

随机推荐

  1. 寒武纪camp Day5

    补题进度:6/10 A(状压dp) 题意: 有n个数字1,2,...,n,有m个限制(a,b),表示至少要有一个数字a排在数字b的前面 你需要构造出一个含有数字1~n的序列,数字可以重复多次,要求该序 ...

  2. 七天从零基础学习android(1)--配置环境

    在写这篇文的时候android开发经验还是0,是一个萌新,这是一篇记录一个萌新从零android编程基础到能编写一个记账本的开发过程(至少我是这样美好的希望着的) 首先因为是没有开发基础的,直接上百度 ...

  3. mysql查看存储过程show procedure status;

    1.mysql查看存储过程(函数) 2.MySQL查看触发器 查看触发器 语法:SHOW TRIGGERS [FROM db_name] [LIKE expr] 实例:SHOW TRIGGERS\G ...

  4. linux 查找目录下的文件内容并替换(批量)

    2.sed和grep配合 命令:sed -i s/yyyy/xxxx/g `grep yyyy -rl --include="*.txt" ./` 作用:将当前目录(包括子目录)中 ...

  5. Promise编程规范

    参考: http://www.cnblogs.com/dojo-lzz/p/4340897.html 闲话promise机制  http://www.cnblogs.com/lvdabao/p/es6 ...

  6. ThoughtWorks技术雷达

    ThoughtWorks技术雷达 技术成熟方案的一个推荐网站.

  7. Linux内核project导论——网络:Filter(LSF、BPF、eBPF)

    概览 LSF(Linux socket filter)起源于BPF(Berkeley Packet Filter).基础从架构一致.但使用更简单.LSF内部的BPF最早是cBPF(classic).后 ...

  8. C++中防止STL中迭代器失效——map/set等关联容器——vector/list/deque等序列容器—如何防止迭代器失效—即erase()的使用

    序列性容器::(vector和list和deque)   erase迭代器不仅使所有指向被删元素的迭代器失效,而且使被   删元素之后的所有迭代器失效,所以不能使用erase(iter++)的方 式, ...

  9. ubuntu hadoop伪分布式部署

    环境 ubuntu hadoop2.8.1 java1.8 1.配置java1.8 2.配置ssh免密登录 3.hadoop配置 环境变量 配置hadoop环境文件hadoop-env.sh core ...

  10. 基于Cocos2dx + box2d 实现的愤慨的小鸟Demo

    1. Demo初始界面 2. 游戏界面 3. 精确碰撞检測 4. 下载  压缩文件文件夹 AngryBird source    愤慨的小鸟Demo源码,基于Cocos2dx C++,以及box2d技 ...