Reshapeing operations

Suppose we have the following tensor:

t = torch.tensor([
[1,1,1,1],
[2,2,2,2],
[3,3,3,3]
], dtype=torch.float32)

We have two ways to get the shape:

> t.size()
torch.Size([3, 4]) > t.shape
torch.Size([3, 4])

The rank of a tensor is equal to the length of the tensor's shape.

> len(t.shape)
2

We can also deduce the number of elements contained within the tensor.

> torch.tensor(t.shape).prod()
tensor(12)

In PyTorch, there is a dedicated function for this:

> t.numel()
12

Reshaping a tensor in PyTorch

> t.reshape([2,6])
tensor([[1., 1., 1., 1., 2., 2.],
[2., 2., 3., 3., 3., 3.]]) > t.reshape([3,4])
tensor([[1., 1., 1., 1.],
[2., 2., 2., 2.],
[3., 3., 3., 3.]]) > t.reshape([4,3])
tensor([[1., 1., 1.],
[1., 2., 2.],
[2., 2., 3.],
[3., 3., 3.]]) > t.reshape(6,2)
tensor([[1., 1.],
[1., 1.],
[2., 2.],
[2., 2.],
[3., 3.],
[3., 3.]]) > t.reshape(12,1)
tensor([[1.],
[1.],
[1.],
[1.],
[2.],
[2.],
[2.],
[2.],
[3.],
[3.],
[3.],
[3.]])

In this example, we increase the rank to 3 :

> t.reshape(2,2,3)
tensor(
[
[
[1., 1., 1.],
[1., 2., 2.]
], [
[2., 2., 3.],
[3., 3., 3.]
]
])

Note:PyTorch has another function view() that does the same thing as the reshape().

Changing shape by squeezing and unsqueezing

These functions allow us to expand or shrink the rank (number of dimensions) of our tensor.

> print(t.reshape([1,12]))
> print(t.reshape([1,12]).shape)
tensor([[1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]])
torch.Size([1, 12]) > print(t.reshape([1,12]).squeeze())
> print(t.reshape([1,12]).squeeze().shape)
tensor([1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.])
torch.Size([12]) > print(t.reshape([1,12]).squeeze().unsqueeze(dim=0))
> print(t.reshape([1,12]).squeeze().unsqueeze(dim=0).shape)
tensor([[1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]])
torch.Size([1, 12])

Let’s look at a common use case for squeezing a tensor by building a flatten function.

Flatten a tensor

Flattening a tensor means to remove all of the dimensions except for one.

A flatten operation on a tensor reshapes the tensor to have a shape that is equal to the number of elements contained in the tensor. This is the same thing as a 1d-array of elements.

def flatten(t):
t = t.reshape(1, -1)
t = t.squeeze()
return t
> t = torch.ones(4, 3)
> t
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]) > flatten(t)
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

We'll see that flatten operations are required when passing an output tensor from a convolutional layer to a linear layer.

In these examples, we have flattened the entire tensor, however, it is possible to flatten only specific parts of a tensor. For example, suppose we have a tensor of shape [2,1,28,28] for a CNN. This means that we have a batch of 2 grayscale images with height and width dimensions of 28 x 28, respectively.

Here, we can specifically flatten the two images. To get the following shape: [2,1,784]. We could also squeeze off the channel axes to get the following shape: [2,784].

Concatenating tensors

We combine tensors using the cat() function

> t1 = torch.tensor([
[1,2],
[3,4]
])
> t2 = torch.tensor([
[5,6],
[7,8]
])

We can combine t1 and t2 row-wise (axis-0) in the following way:

> torch.cat((t1, t2), dim=0)
tensor([[1, 2],
[3, 4],
[5, 6],
[7, 8]])

We can combine them column-wise (axis-1) like this:

> torch.cat((t1, t2), dim=1)
tensor([[1, 2, 5, 6],
[3, 4, 7, 8]])

Flatten operation for a batch of image inputs to a CNN

Flattening specific axes of a tensor

We know that the tensor inputs to a convolutional neural network typically have 4 axes, one for batch size, one for color channels, and one each for height and width.

\[(Batch Size, Channels, Height, Width)
\]

To start, suppose we have the following three tensors.

t1 = torch.tensor([
[1,1,1,1],
[1,1,1,1],
[1,1,1,1],
[1,1,1,1]
]) t2 = torch.tensor([
[2,2,2,2],
[2,2,2,2],
[2,2,2,2],
[2,2,2,2]
]) t3 = torch.tensor([
[3,3,3,3],
[3,3,3,3],
[3,3,3,3],
[3,3,3,3]
])

Remember, batches are represented using a single tensor, so we’ll need to combine these three tensors into a single larger tensor that has three axes instead of 2.

> t = torch.stack((t1, t2, t3))
> t.shape torch.Size([3, 4, 4])

Here, we used the stack() function to concatenate our sequence of three tensors along a new axis.

> t
tensor([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]], [[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]], [[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]]])

All we need to do now to get this tensor into a form that a CNN expects is add an axis for the color channels. We basically have an implicit single color channel for each of these image tensors, so in practice, these would be grayscale images.

> t = t.reshape(3,1,4,4)
> t
tensor(
[
[
[
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]
]
],
[
[
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]
]
],
[
[
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]
]
]
])
Flattening the tensor batch

Here are some alternative implementations of the flatten() function.

> t.reshape(1,-1)[0]
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.reshape(-1)
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.view(t.numel())
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.flatten()
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])

This flattened batch won’t work well inside our CNN because we need individual predictions for each image within our batch tensor, and now we have a flattened mess.

The solution here, is to flatten each image while still maintaining the batch axis. This means we want to flatten only part of the tensor. We want to flatten the, color channel axis with the height and width axes.

> t.flatten(start_dim=1).shape
torch.Size([3, 16]) > t.flatten(start_dim=1)
tensor(
[
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
]
)

Reshapeing operations的更多相关文章

  1. backup, file manipulation operations (such as ALTER DATABASE ADD FILE) and encryption changes on a database must be serialized.

    昨天在检查YourSQLDba备份时,发现有台数据库做备份时出现了下面错误信息,如下所示: <Exec>   <ctx>yMaint.ShrinkLog</ctx> ...

  2. HDU 5938 Four Operations(四则运算)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  3. ios基础篇(二十九)—— 多线程(Thread、Cocoa operations和GCD)

    一.进程与线程 1.进程 进程是指在系统中正在运行的一个应用程序,每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内: 如果我们把CPU比作一个工厂,那么进程就好比工厂的车间,一个工厂有 ...

  4. OpenCascade Modeling Algorithms Boolean Operations

    Modeling Algorithms Boolean Operations of Opencascade eryar@163.com 布尔操作(Boolean Operations)是通过两个形状( ...

  5. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. mouse scrollings and zooming operations in linux & windows are opposite

    mouse scrollings and zooming operations in linux & windows are opposite. windows中, 鼠标滚动的方向是: 查看页 ...

  8. MongoDB—— 写操作 Core MongoDB Operations (CRUD)

    MongoDB使用BSON文件存储在collection中,本文主要介绍MongoDB中的写操作和优化策略. 主要有三种写操作:        Create        Update        ...

  9. MongoDB—— 读操作 Core MongoDB Operations (CRUD)

    本文主要介绍内容:从MongoDB中请求数据的不同的方法 Note:All of the examples in this document use the mongo shell interface ...

随机推荐

  1. HDU——1054 Strategic Game

    Strategic Game Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. SpringDataJPA入门2

    SpringDataJPA实体概述 JPA提供了一种简单高效的方式来管理Java对象(POJO)到关系型数据库的映射,此类Java对象成为JPA实体或简称实体.实体通常与底层数据库中的单个关系表相关联 ...

  3. 如何用grep命令同时显示“匹配行”上下的n行?

    如何用grep命令同时显示匹配行上下的n行   标准unix/linux下的grep通过以下参数控制上下文 grep -C 5 foo file 显示file文件中匹配foo字串那行以及上下5行gre ...

  4. centos6.5 (linux) 禁用模块 IPV6模块的方法

    装完centos后,默认开启了一些模块.可是有些模块并非我们必须的.比方眼下尚未在中国普及的IPV6 怎样关闭IPV6呢 以下介绍的方法,也能够在关闭其它模块的时候使用 第一步: 查找模块名称 使用命 ...

  5. Office WORD如何取消开始工作右侧栏

    工具-选项-视图,取消勾选"启动任务窗格"  

  6. 纯C语言实现简单封装继承机制

    0 继承是OO设计的基础 继承是OO设计中的基本部分,也是实现多态的基础,C++,C#,Objective-C.Java.PHP.JavaScript等为OO而设计的语言,其语言本身对实现继承提供了直 ...

  7. 如何离线分析Kafka海量业务消息?1分钟快速为您支招

    场景介绍 说起Kafka,许多使用者对它是又爱又恨.Kafka是一种分布式的.基于发布/订阅的消息系统,其极致体验让人欲罢不能,但操心的运维.复杂的安全策略.可靠性易用性的缺失等,仍需要使用者付出诸多 ...

  8. 李洪强iOS开发之性能优化技巧

    李洪强iOS开发之性能优化技巧 通过静态 Analyze 工具,以及运行时 Profile 工具分析性能瓶颈,并进行性能优化.结合本人在开发中遇到的问题,可以从以下几个方面进行性能优化. 一.view ...

  9. HTML5裁剪图片并上传至服务器实现原理讲解

    HTML5裁剪图片并上传至服务器实现原理讲解   经常做项目需要本地上传图片裁剪并上传服务器,比如会议头像等功能,但以前实现这类需求都很复杂,往往需要先把图片上传到服务器,然后返回给用户,让用户确定裁 ...

  10. Repeater控件前台复杂逻辑判断

    虽然现在开发大都是前后台ajax的方式,但是还有部分项目用后台cs代码+服务器控件开发的方式,小弟今天就遇到了一个 repeater显示列表,有一个字段是state状态,数据库里面存的是0 1 2类似 ...