Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
        

Description

Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 



Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing
of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for
the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

其实这个题看了好久都没搞懂意思,然后找了找博客原来就是给定n个站点(就这样理解吧),m条路,两个站点之间有且只有一条路,每条路都有一个最大载重量,求整个路径组成的图中的最大的承重;比如,1到2之间的载重是3,超过3便不能从这条路上过,而1到3之间的载重是4,这时已经将图连接起来了,所以最大值是4,如果选1->2->3,则1、2之间的路就不能过重量为5的升降机;

这样,就相当于求一个最大生成树的权值最小的那条边,不过用生成树的方法不是超时就RE,只好用最短路中的一个算法解决了,我们看,既然dijkstra是求单源的最短路,d[i]存储的是从起始点到i点的最短路,那么我们就用它来存起始点到i点权值最小的那个;这样答案不就出来了;想想看,这道题逻辑性很强,求能承载的最大重量实际上是求整个联通图中权值最小的,就像短板原理--能装多少水取决于最短的那块木板;

Kruskal生成树:RE,数组开大了又会超时;

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000+10;
struct node
{
int u,v,w;
}a[N];
int n,m,f[N];
int find(int x)
{
return f[x]==-1?x:f[x]=find(f[x]);
}
int cmp(node a,node b)
{
return a.w>b.w;
}
int ks(int n,int m)
{
for(int i=0;i<m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a,a+m,cmp);
int minn=10000000;
memset(f,-1,sizeof(f));
for(int i=0;i<m;i++)
{
int x=find(a[i].u);
int y=find(a[i].v);
if(x!=y)
{
minn=min(minn,a[i].w);
f[x]=y;
}
if(find(1)==find(n))
break;
}
return minn;
}
int main()
{
int t;
scanf("%d",&t);
int t1=t;
while(t--)
{
memset(a,0,sizeof(a));
scanf("%d%d",&n,&m);
int x=ks(n,m);
printf("Scenario #%d:\n%d\n",t1-t,x);
}
return 0;
}

Dijkstra最短路变形:AC

#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1005;
int w[N][N],v[N],d[N],n,m,t,t1;
void dijkstra()
{
int a,b,c,i,j;
memset(w,0,sizeof(w));
for(i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
w[a][b]=w[b][a]=c;
}
memset(v,0,sizeof(v));
for(i=1; i<=n; i++)
d[i]=w[1][i];
for(i=1;i<=n;i++)
{
int x,m=-1;
for(j=1;j<=n;j++)
if(!v[j]&&d[j]>m)
m=d[x=j];
v[x]=1;
for(j=1;j<=n;j++)
if(!v[j] && d[j]<min(d[x],w[x][j]))
d[j]=min(d[x],w[x][j]);
}
printf("Scenario #%d:\n",t1-t);
printf("%d\n\n",d[n]);
}
int main()
{
scanf("%d",&t);
t1=t;
while(t--)
{
scanf("%d%d",&n,&m);
dijkstra();
}
return 0;
}

POJ-1797Heavy Transportation,最短路变形,用dijkstra稍加修改就可以了;的更多相关文章

  1. POJ 1797 Heavy Transportation 最短路变形(dijkstra算法)

    题目:click here 题意: 有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上的最大承载量.分析: 其实这个求最大边可以 ...

  2. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  3. poj 1797Heavy Transportation(dijkstra变形)

    题目链接:http://poj.org/problem?id=1797 题意:有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上 ...

  4. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  6. Heavy Transportation POJ 1797 最短路变形

    Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...

  7. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  8. POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 Description After going through the receipts from your car trip ...

  9. POJ 2253 Frogger【最短路变形——路径上最小的最大权】

    链接: http://poj.org/problem?id=2253 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

随机推荐

  1. 转--oracle查看允许的最大连接数和当前连接数等信息

    两个参数间的关系:sessions=1.1*processes+5 目前总结的语句,在查看数据的连接情况很有用,写完程序一边测试代码一边查看数据库连接的释放情况有助于分析优化出一个健壮的系统程序来. ...

  2. JDBC——入门知识【转】

      1. 什么是JDBC:Java数据库连接性(JavaDatabase Connectivity) API,允许用户从Java应用程序中访问任何表格化数据源. 2. JDBC除了提供到更宽范围的SQ ...

  3. Error: IO_ERROR : java.io.IOException: Error while connecting Oozie server. No of retries = 5. Exception = Connection refused (Connection refused)解决办法(图文详解)

    不多说,直接上干货! 问题详情 解决办法 Copy/Paste oozie.services property tag set from oozie-default.xml to oozie-site ...

  4. 动手实现 React-redux(五):Provider

    我们要把 context 相关的代码从所有业务组件中清除出去,现在的代码里面还有一个地方是被污染的.那就是 src/index.js 里面的 Index: ... class Index extend ...

  5. mysql索引命中规则

    转于:https://blog.csdn.net/claram/article/details/77574600 首先明确:为什么要用联合索引? 对于查询语句“SELECT E.* FROM E WH ...

  6. iOS 使用UIBezierPath和CAShapeLayer画各种图形

    CAShapeLayer 是 CALayer 的子类,但是比 CALayer 更灵活,可以画出各种图形,当然,你也可以使用其他方式来画,随你. 杂谈 在 CAShapeLayer 中,也可以像 CAL ...

  7. 登录脚本重构by封装

    package com.gubai.selenium; import org.openqa.selenium.By; import org.openqa.selenium.WebDriver; imp ...

  8. 11gR2集群件任务角色分离(Job Role Separation)简介

       从11gR2版本开始,Oracle推荐使用不同的操作系统用户安装GI和数据库软件,例如:使用grid用户安装GI,使用Oracle用户安装数据库软件.当然,用户还是可以使用Oracle用户安装G ...

  9. (转)编写Spring的第一个案例并测试Spring的开发环境

    http://blog.csdn.net/yerenyuan_pku/article/details/52832145 Spring4.2.5的开发环境搭建好了之后,我们来编写Spring的第一个案例 ...

  10. Unity Shader-热空气扭曲效果

    GrabPass GrabPass是Unity为我们提供的一个很方便的功能,可以直接将当前屏幕内容渲染到一张贴图上,我们可以直接在shader中使用这张贴图而不用自己去实现渲染到贴图这样的一个过程,大 ...