Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
        

Description

Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 



Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing
of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for
the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

其实这个题看了好久都没搞懂意思,然后找了找博客原来就是给定n个站点(就这样理解吧),m条路,两个站点之间有且只有一条路,每条路都有一个最大载重量,求整个路径组成的图中的最大的承重;比如,1到2之间的载重是3,超过3便不能从这条路上过,而1到3之间的载重是4,这时已经将图连接起来了,所以最大值是4,如果选1->2->3,则1、2之间的路就不能过重量为5的升降机;

这样,就相当于求一个最大生成树的权值最小的那条边,不过用生成树的方法不是超时就RE,只好用最短路中的一个算法解决了,我们看,既然dijkstra是求单源的最短路,d[i]存储的是从起始点到i点的最短路,那么我们就用它来存起始点到i点权值最小的那个;这样答案不就出来了;想想看,这道题逻辑性很强,求能承载的最大重量实际上是求整个联通图中权值最小的,就像短板原理--能装多少水取决于最短的那块木板;

Kruskal生成树:RE,数组开大了又会超时;

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000+10;
struct node
{
int u,v,w;
}a[N];
int n,m,f[N];
int find(int x)
{
return f[x]==-1?x:f[x]=find(f[x]);
}
int cmp(node a,node b)
{
return a.w>b.w;
}
int ks(int n,int m)
{
for(int i=0;i<m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a,a+m,cmp);
int minn=10000000;
memset(f,-1,sizeof(f));
for(int i=0;i<m;i++)
{
int x=find(a[i].u);
int y=find(a[i].v);
if(x!=y)
{
minn=min(minn,a[i].w);
f[x]=y;
}
if(find(1)==find(n))
break;
}
return minn;
}
int main()
{
int t;
scanf("%d",&t);
int t1=t;
while(t--)
{
memset(a,0,sizeof(a));
scanf("%d%d",&n,&m);
int x=ks(n,m);
printf("Scenario #%d:\n%d\n",t1-t,x);
}
return 0;
}

Dijkstra最短路变形:AC

#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1005;
int w[N][N],v[N],d[N],n,m,t,t1;
void dijkstra()
{
int a,b,c,i,j;
memset(w,0,sizeof(w));
for(i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
w[a][b]=w[b][a]=c;
}
memset(v,0,sizeof(v));
for(i=1; i<=n; i++)
d[i]=w[1][i];
for(i=1;i<=n;i++)
{
int x,m=-1;
for(j=1;j<=n;j++)
if(!v[j]&&d[j]>m)
m=d[x=j];
v[x]=1;
for(j=1;j<=n;j++)
if(!v[j] && d[j]<min(d[x],w[x][j]))
d[j]=min(d[x],w[x][j]);
}
printf("Scenario #%d:\n",t1-t);
printf("%d\n\n",d[n]);
}
int main()
{
scanf("%d",&t);
t1=t;
while(t--)
{
scanf("%d%d",&n,&m);
dijkstra();
}
return 0;
}

POJ-1797Heavy Transportation,最短路变形,用dijkstra稍加修改就可以了;的更多相关文章

  1. POJ 1797 Heavy Transportation 最短路变形(dijkstra算法)

    题目:click here 题意: 有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上的最大承载量.分析: 其实这个求最大边可以 ...

  2. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  3. poj 1797Heavy Transportation(dijkstra变形)

    题目链接:http://poj.org/problem?id=1797 题意:有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上 ...

  4. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  6. Heavy Transportation POJ 1797 最短路变形

    Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...

  7. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  8. POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 Description After going through the receipts from your car trip ...

  9. POJ 2253 Frogger【最短路变形——路径上最小的最大权】

    链接: http://poj.org/problem?id=2253 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

随机推荐

  1. [未读]backbonejs应用程序开发

    买来就没有动过,那阵子刚好离职找工作,之后学backbone的劲头就过去了= =

  2. AndroidStudio碰到的各种问题

    源码已经下载了,但是为毛关联不了? 我的源码默认是下载在Sdk\sources\android-23\目录下面的,以前开发的时候都是自动关联的,今天碰到了怎么刷新,怎么关联都不行. 解决方式为: 1. ...

  3. 小程序setData,视图层没有跟新

    如果你完全符合微信介绍的setData使用说明的情况下,发现视图层没有更新,你可以看看我的这种情况. 使用setData的时候,修改的是data中一个对象的值,然后这个对象里面第一层不能含有 numb ...

  4. xutils3批量上传文件

    前几天开发安卓要用到文件批量上传,就是上传图片,视频,文件之类的用到Xutil3框架,用 RequestParams params = new RequestParams(url); params.a ...

  5. How exception works ?

    这是2013年写的一篇旧文,放在gegahost.net上面 http://raison.gegahost.net/?p=28 February 18, 2013 How exception work ...

  6. codevs 1043 方格取数 2000年NOIP全国联赛提高组

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而 ...

  7. # Transition:添加弹出过渡效果

    # Transition:添加弹出过渡效果 通过鼠标的单击.获得焦点,被点击或对元素任何改变中触发,并平滑地以动画效果改变CSS的属性值. W3C-transition MDN-transition ...

  8. 如何实现Windows宿主系统和虚拟机ubuntu系统文件互相访问

    我的宿主操作系统是Windows 10,使用Oracle的Virtual Box安装了Ubuntu. 因为工作需要我经常得在两个系统之间互相拷贝一些数据,下面是具体步骤,可以实现Windows 10和 ...

  9. 嵌入式C语言-学习书籍推荐(pdf附上百度云链接)

    先推荐学习视频网站: https://www.bilibili.com/video/av22631677?from=search&seid=800092160484173881 书籍只推荐2本 ...

  10. iview table 普通表格样式

    iview table 普通表格样式 https://run.iviewui.com/UvLFPMb0 <template> <table> <thead> < ...