【BZOJ 1222】 [HNOI2001] 产品加工(DP)
Description
某加工厂有A、B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。你的任务就是:已知每个任务在A机器上加工所需的时间t1, B机器上加工所需的时间t2及由两台机器共同加工所需的时间t3,请你合理安排任务的调度顺序,使完成所有n个任务的总时间最少。
Input
输入共n+1行第1行为 n。 n是任务总数(1≤n≤6000)第i+1行为3个[0,5]之间的非负整数t1,t2,t3,分别表示第i个任务在A机器上加工、B机器上加工、两台机器共同加工所需要的时间。如果所给的时间t1或t2为0表示任务不能在该台机器上加工,如果t3为0表示任务不能同时由两台机器加工。
Output
最少完成时间
Sample Input
5
2 1 0
0 5 0
2 4 1
0 0 3
2 1 1
Sample Output
9
题解
设dp[i]为A机器工作需时间i,B机器工作需时间dp[i],之后背包选择三种方案即可。
代码
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 30005
#define mod 1000000007
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=6005;
int a[N],b[N],c[N];
int dp[inf+10];
int main()
{
int n=read(),m=0;
for(int i=1;i<=n;i++){
a[i]=read(),b[i]=read(),c[i]=read();
if(!a[i]) a[i]=inf;
if(!b[i]) b[i]=inf;
if(!c[i]) c[i]=inf;
int tmp=inf;
tmp=min(tmp,a[i]);tmp=min(tmp,b[i]);
tmp=min(tmp,c[i]);m+=tmp;
}
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
for(int i=1;i<=n;i++) for(int j=m;j>=0;j--){
dp[j]+=b[i];
if(j>=a[i]) dp[j]=min(dp[j],dp[j-a[i]]);
if(j>=c[i]) dp[j]=min(dp[j],dp[j-c[i]]+c[i]);
}
int ans=inf;
for(int i=0;i<=m;i++) ans=min(ans,max(i,dp[i]));
Out(ans);
return 0;
}
【BZOJ 1222】 [HNOI2001] 产品加工(DP)的更多相关文章
- bzoj 1222: [HNOI2001]产品加工 dp
1222: [HNOI2001]产品加工 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 381 Solved: 218[Submit][Status ...
- Bzoj 1222: [HNOI2001]产品加工 动态规划
1222: [HNOI2001]产品加工 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 486 Solved: 298[Submit][Status ...
- BZOJ 1222: [HNOI2001]产品加工
F[i]表示第一个机器用了i的时间,第二个机器的最小时间 转移即可 #include<cstdio> #include<algorithm> using namespace s ...
- 【BZOJ1222】[HNOI2001]产品加工 DP
[BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...
- BZOJ1222[HNOI2001]产品加工——DP
题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...
- 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]
题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...
- bzoj1222: [HNOI2001]产品加工--DP
DP神题orz dp[i]表示机器1工作i小时,机器2工作dp[i]小时 那么对于每个任务: 选1:dp[i]=dp[i-a]; 选2:dp[i]=dp[i]+b; 选1+2:dp[i]=dp[i-c ...
- 洛谷 P2224 [HNOI2001]产品加工 解题报告
P2224 [HNOI2001]产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需 ...
- BZOJ 1222 产品加工(DP)
某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任 ...
随机推荐
- java.util.Properties类的介绍-配置文件的读写【-Z-】
简介:java.util.Properties是对properties这类配置文件的映射.支持key-value类型和xml类型两种. #打头的是注释行,Properties会忽略注释.允许只有key ...
- CG Shader常用函数
为了方便自己记忆,将常用的CG函数写于此 转载于 http://www.cppblog.com/lai3d/archive/2008/10/23/64889.html Name Syntax Desc ...
- mysql对库,表及记录的增删改查
破解密码 #1.关闭mysqlnet stop mysqlmysql还在运行时需要输入命令关闭,也可以手动去服务关闭 #2.重新启动mysqld --skip-grant-tables跳过权限 #3m ...
- Macbook air 上打开cocoscreator出错
Error: EROFS: read-only file system, open '/Volumes/Cocos Creator/CocosCreator.app/Contents/Resource ...
- 【学习笔记】深入理解js原型和闭包(0)——目录
文章转载:https://www.cnblogs.com/wangfupeng1988/p/4001284.html 说明: 本篇文章一共16篇章,外加两篇后补的和一篇自己后来添加的学习笔记,一共19 ...
- CCF|最大波动|Java|100
import java.util.*; public class Main { public static void main(String[] args) { Scanner in = new Sc ...
- oid和节点名称
由于单篇文档最大字限制是40000个字符,不能将OID附上,因此写出我是如何得到这些OID的. 1.安装NET-SNMP yum install net-snmp yum install net-sn ...
- PMP项目管理学习笔记(9)——范围管理
关于范围管理的几个名词定义 产品范围:表示你和你的团队正在构建的产品或服务的特性和功能:产品范围与最终产品有关,包括产品的特性,组件和组成部分.人们谈论确定产品的范围时,大多都是在谈论确定产品的特性, ...
- Sql Server 2012 分页方法分析(offset and fetch)
最近在分析 Sql Server 2012 中 offset and fetch 的新特性,发现 offset and fetch 无论语法的简洁还是功能的强大,都是相当相当不错的.其中 offse ...
- 洛谷 P2788 数学1(math1)- 加减算式
题目背景 蒟蒻HansBug在数学考场上,挠了无数次的头,可脑子里还是一片空白. 题目描述 好不容易啊,HansBug终于熬到了做到数学最后一题的时刻了,眼前是一堆杂乱的加减算式.显然成功就在眼前了. ...