2694: Lcm

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 422  Solved: 220
[Submit][Status][Discuss]

Description

对于任意的>1的n gcd(a, b)不是n^2的倍数
也就是说gcd(a, b)没有一个因子的次数>=2

Input

一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M

Output

T行 每行一个整数 表示第i组数据的结果

Sample Input

4
2 4
3 3
6 5
8 3

Sample Output

24
28
233
178

HINT

HINT

T <= 10000

N, M<=4000000

 
 
感谢DZM大爷借我权限号一用2333
然后发现 第三个条件 就是要求gcd没有平方因子,所以写成 *μ^2(gcd(a,b)) 就行了,然后就是一个积性函数题了、、
 
#include<bits/stdc++.h>
#define ll long long
const int maxn=4000000;
const int ha=1<<30;
using namespace std;
int zs[maxn/5],t=0,T,n,m;
int low[maxn+5],f[maxn+5];
bool v[maxn+5]; inline int add(int x,int y){
x+=y;
return x>=ha?x-ha:x;
} inline void init(){
low[1]=f[1]=1;
for(int i=2;i<=maxn;i++){
if(!v[i]) zs[++t]=i,low[i]=i,f[i]=1-i;
for(int j=1,u;j<=t&&(u=zs[j]*i)<=maxn;j++){
v[u]=1;
if(!(i%zs[j])){
low[u]=low[i]*zs[j];
if(!v[low[i]]) f[u]=f[i/low[i]]*-low[i];
else f[u]=0;
break;
}
low[u]=zs[j];
f[u]=f[i]*f[zs[j]];
}
} for(int i=1;i<=maxn;i++) f[i]=add(add(f[i],ha)*(ll)i%ha,f[i-1]);
} inline int solve(){
int an=0;
if(n>m) swap(n,m); for(int i=1,nx,ny,j;i<=n;i=j+1){
nx=n/i,ny=m/i,j=min(n/nx,m/ny);
an=add(an,((nx+1)*(ll)nx>>1)%ha*(ll)(((ny+1)*(ll)ny>>1)%ha)%ha*(ll)add(f[j],ha-f[i-1])%ha);
} return an;
} int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
printf("%d\n",solve());
}
return 0;
}

  

bzoj 2694: Lcm的更多相关文章

  1. ●BZOJ 2694 Lcm

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2694 题解: 莫比乌斯反演 不难看出,造成贡献的(i,j)满足gcd(i,j)无平方因子. ...

  2. [bzoj] 2694 Lcm || 莫比乌斯反演

    原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...

  3. BZOJ:4659&&BZOJ:2694: Lcm

    Description 给出A,B,考虑所有满足l<=a<=A,l<=b<=B,且不存在n>1使得n^2同时整除a和b的有序数 对(a,b),求其lcm(a,b)之和.答 ...

  4. BZOJ 2694: Lcm [莫比乌斯反演 线性筛]

    题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...

  5. BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常

    求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...

  6. 【BZOJ】【2694】Lcm

    数论/莫比乌斯反演/线性筛 题解:http://www.cnblogs.com/zyfzyf/p/4218176.html JZPTAB的加强版?感觉线性筛好像还是不怎么会啊……sad 题目记下来,回 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. bzoj 2154 莫比乌斯反演求lcm的和

    题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...

  9. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

随机推荐

  1. LeetCode 买卖股票的最佳时机

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润. 注意你不能在买入股票前卖出股票. 示例 ...

  2. hihoCoder-1098-kruskal

    如果起始点和终止点的父节点相同,就说明它们就已经在同一个连通分量里面,说明,起始点和终止点在此之前就已经被连入同一个分量之中,如果此时还将起始点和终止点连入此分量,就会形成回路,想象一个三角形,你大概 ...

  3. 控制mysql数字转换

    在实际工作中我们常常需要将数字进行格式化,比如将12.0073233变为12.01,或把12变为12.00,或把12变为0000012,这种格式之间的转换总结如下:     一,浮点数的转换--直接设 ...

  4. CSS3的border-image

    border-image:none|image-url|number|percentage|stretch,repeat,round 参数: none:默认,无背景图片 url:地址,可以为绝对,也可 ...

  5. web开发框架Flask学习一

    flask框架 用Python做Web开发的三大框架特点 Django 主要特点是大而全,集成了很多的组件,例如:Admin Form Model等,不管你用不用的到,他都会为 你提供,通常用于大型W ...

  6. TSOJ--方格上的路径

    题目描述: 试求 n × m 的方格图形中,从点 (0, 0) 到点 (n, m) 的最短路径数目. 输入描述: 有多组测试数据.输入的第一行为一个正整数 N,表示接下来有 N 组测试数据. 在接下来 ...

  7. 【SaltStack】在Master上给Minion端安装zabbix

    一.IP信息说明 [Master] IP: 192.168.236.100 [Minion] IP: 192.168.236.101 二.配置SaltStack 关于SaltStack Master和 ...

  8. 00051_static关键字

    1.static概念 当在定义类的时候,类中都会有相应的属性和方法.而属性和方法都是通过创建本类对象调用的.当在调用对象的某个方法时,这个方法没有访问到对象的特有数据时,方法创建这个对象有些多余.可是 ...

  9. angular 组件之间传值

    /** * Created by Administrator on 2017/8/28. */ var app =angular.module('app',[]); app.directive('fo ...

  10. OSPF 提升四 Network Types & FRAM-RELAY

    Network Types 1.loopback 2.point-to-point 3.broadcast 4.NBMA 5.POINT-TO-Multipoint 6.point-To-Multip ...