题目描述

给定一个n×n的棋盘,棋盘上每个位置要么为空要么为障碍。定义棋盘上两个位置(x,y),(u,v)能互相攻击当前仅
当满足以下两个条件:
1:x=u或y=v
2:对于(x,y)与(u,v)之间的所有位置,均不是障碍。
现在有q个询问,每个询问给定ki,要求从棋盘中选出ki个空位置来放棋子,问最少互相能攻击到的棋子对数是多少?

输入

第一行一个整数n。
接下来输入一个n×n的字符矩阵,一个位置若为.,则表示这是一个空位置,若为#,则为障碍。
第n+2行输入一个整数q代表询问个数。
接下来q行,每行一个整数k,代表要放的棋子个数。
n ≤ 50, q ≤ 10000, k ≤ 棋盘中空位置数量

输出

输出共q行,每行代表对应询问的最少的互相能攻击到的棋子对数。

样例输入

4
..#.
####
..#.
..#. 
1
7

样例输出

2


题解

费用流, bzoj4554 的强化版

按照那道题的思路,把相互影响的行和列的部分拿出来,同一个点的行部分和列部分之间连边。

不过这道题是固定棋子数,问最小的影响的棋子对数。

考虑,一个行或列的部分,如果存在k个棋子,那么相互影响的棋子对数为$\frac{k(k-1)}2$对(两个棋子之间隔着其它棋子也算相互影响)。

所以我们可以使用拆边法来解决,从S到行的部分、从列的部分到T连d条边,其中d为该部分的位置数。第i条边的费用为$\frac{i(i-1)}2-\frac{(i-1)(i-2)}2=i-1$。

然后跑费用流。在此过程中,由于每条增广路的容量必定为1,所以相当于每次多放置了一个棋子。这样我们可以只跑一次EK费用流即可预处理出所有答案,然后再$O(1)$回答。

时间有点长但可以过,可以动态加边来提高效率(这里懒了没有写)

#include <cstdio>
#include <cstring>
#include <queue>
#define N 6010
#define M 1200010
#define inf 0x3f3f3f3f
using namespace std;
queue<int> q;
int map[60][60] , bx[60][60] , tx , by[60][60] , ty , sx[N] , sy[N] , head[N] , to[M] , val[M] , cost[M] , next[M] , cnt = 1 , s , t , dis[N] , from[N] , pre[N] , ans[N];
char str[60];
void add(int x , int y , int v , int c)
{
to[++cnt] = y , val[cnt] = v , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int x , i;
memset(from , -1 , sizeof(from));
memset(dis, 0x3f , sizeof(dis));
dis[s] = 0 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
void mincost()
{
int k = 0 , i;
while(spfa())
{
k ++ , ans[k] = ans[k - 1] + dis[t];
for(i = t ; i != s ; i = from[i]) val[pre[i]] -- , val[pre[i] ^ 1] ++ ;
}
}
int main()
{
int n , q , i , j , x;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str + 1);
for(j = 1 ; j <= n ; j ++ ) map[i][j] = (str[j] == '#');
}
for(i = 1 ; i <= n ; i ++ )
{
tx ++ ;
for(j = 1 ; j <= n ; j ++ ) bx[i][j] = tx , sx[tx] ++ , tx += map[i][j];
}
for(j = 1 ; j <= n ; j ++ )
{
ty ++ ;
for(i = 1 ; i <= n ; i ++ ) by[i][j] = ty , sy[ty] ++ , ty += map[i][j];
}
s = 0 , t = tx + ty + 1;
for(i = 1 ; i <= tx ; i ++ )
for(j = 0 ; j < sx[i] ; j ++ )
add(s , i , 1 , j);
for(i = 1 ; i <= ty ; i ++ )
for(j = 0 ; j < sy[i] ; j ++ )
add(i + tx , t , 1 , j);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
if(!map[i][j])
add(bx[i][j] , by[i][j] + tx , 1 , 0);
mincost();
scanf("%d" , &q);
while(q -- ) scanf("%d" , &x) , printf("%d\n" , ans[x]);
return 0;
}

【bzoj4930】棋盘 费用流的更多相关文章

  1. [LOJ#6068]. 「2017 山东一轮集训 Day4」棋盘[费用流]

    题意 题目链接 分析 考虑每个棋子对对应的横向纵向的极大区间的影响:记之前这个区间中的点数为 \(x\) ,那么此次多配对的数量即 \(x\) . 考虑费用流,\(S\rightarrow 横向区间 ...

  2. 「2017 山东一轮集训 Day4」棋盘(费用流)

    棋盘模型 + 动态加边 #include<cstdio> #include<algorithm> #include<iostream> #include<cs ...

  3. LOJ.6068.[2017山东一轮集训Day4]棋盘(费用流zkw)

    题目链接 考虑两个\(\#\)之间产生的花费是怎样的.设这之间放了\(k\)个棋子,花费是\(\frac{k(k-1)}{2}\). 在\((r,c)\)处放棋子,行和列会同时产生花费,且花费和该行该 ...

  4. 【BZOJ4930】棋盘 拆边费用流

    [BZOJ4930]棋盘 Description 给定一个n×n的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置(x,y),(u,v)能互相攻击当前仅 当满足以下两个条件: 1:x=u或y ...

  5. BZOJ4930: 棋盘

    BZOJ4930: 棋盘 https://lydsy.com/JudgeOnline/problem.php?id=4930 分析: 基本上就是游戏那道题加上费用流了,所以没啥好说的. 记得两边都是拆 ...

  6. ACdream 1128 Maze(费用流)

    题目链接:http://acdream.info/problem?pid=1128 Problem Description wuyiqi陷入了一个迷宫中,这个迷宫是由N*M个格子组成的矩阵.每个格子上 ...

  7. 洛谷P4003 无限之环(infinityloop)(网络流,费用流)

    洛谷题目传送门 题目 题目描述 曾经有一款流行的游戏,叫做 Infinity Loop,先来简单的介绍一下这个游戏: 游戏在一个 n ∗ m 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在格 ...

  8. BZOJ2673 [Wf2011]Chips Challenge 费用流 zkw费用流 网络流

    https://darkbzoj.cf/problem/2673 有一个芯片,芯片上有N*N(1≤N≤40)个插槽,可以在里面装零件. 有些插槽不能装零件,有些插槽必须装零件,剩下的插槽随意. 要求装 ...

  9. 【BZOJ2668】[cqoi2012]交换棋子 费用流

    [BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...

随机推荐

  1. Android 实现九宫格、点击图片放大全屏浏览等

    项目GitHub地址https://github.com/tikeyc/TNinePlaceGridView_Android https://github.com/tikeyc/TikeycAndro ...

  2. DVWA之跨站请求伪造(CSRF)

    CSRF全称是Cross site request forgery ,翻译过来就是跨站请求伪造. CSRF是指利用受害者尚未失效的身份认证信息(cookie,会话信息),诱骗其点击恶意链接或者访问包含 ...

  3. 【Web应用-Kudu】Kudu 管理和诊断 azure web 应用

    Azure  Kudu是 GitHub 上的一个开源项目,Kudu 站点 (也称为网站控制管理 SCM) 提供了一系列的在线工具,可以帮助用户查看 web 应用的设置,诊断 web 应用,以及安装 w ...

  4. LINUX 安装JDK (rpm格式和tar.gz格式)

    谷歌博客地址:http://tsaiquinn.blogspot.com/2014/10/linux-jdk-rpmtargz.html JDK rpm方式: 我使用的是SecureCRT,先下载了然 ...

  5. JAVA的程序基本结构和数据类型

    //源程序 Hello.java public class Hello { static String str ="Hello World"; public static void ...

  6. shiro : java.lang.IllegalArgumentException: Odd number of characters.

    shiro使用的时候: java.lang.IllegalArgumentException: Odd number of characters.    at org.apache.shiro.cod ...

  7. 当互联网遇上家装,十大家装O2O混战

    2015年已过去大半,装修O2O就出现了新的局面:为数众多的家居网络平台在家装O2O领域还未站稳脚跟,新的入局者就打出超低价格登场.新老O2O家装大战迅速展开,除了拼价格还拼品牌和体验,家装O2O的好 ...

  8. UIWebView与JavaScript相互调用

    UIWebView与JavaScript的那些事儿 UIWebView是IOS SDK中渲染网面的控件,在显示网页的时候,我们可以hack网页然后显示想显示的内容.其中就要用到javascript的知 ...

  9. WPF知识点全攻略05- XAML内容控件

    此处简单列举出布局控件外,其他常用的控件: Window:WPF窗口 UserControl:用户控件 Page:页 Frame:用来浏览Page页 Border:嵌套控件,提供边框和背景. Butt ...

  10. HDU - 4802 - GPA (水题)

    题意: 计算GPA,输入一个数字和一个字符串,用 数字×字符串对应的数值 思路: 用map对应数值,要注意的是字符串为P或者N的时候,不计入结果 代码: #include<iostream> ...