0104探究MySQL优化器对索引和JOIN顺序的选择
转自http://www.jb51.net/article/67007.htm,感谢博主
本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序。表结构和数据准备参考本文最后部分"测试环境"。这里主要介绍MySQL优化器的主要执行流程,而不是介绍一个优化器的各个组件(这是另一个话题)。
我们知道,MySQL优化器只有两个自由度:顺序选择;单表访问方式;这里将详细剖析下面的SQL,看看MySQL优化器如何做出每一步的选择。
explain
select *
from
employee as A,department as B
where
A.LastName = 'zhou'
and B.DepartmentID = A.DepartmentID
and B.DepartmentName = 'TBX';
1. 可能的选择
这里看到JOIN的顺序可以是A|B或者B|A,单表访问方式也有多种,对于A表可以选择:全表扫描和索引`IND_L_D`(A.LastName = 'zhou')或者`IND_DID`(B.DepartmentID = A.DepartmentID)。对于B也有三个选择:全表扫描、索引IND_D、IND_DN。
2. MySQL优化器如何做
2.1 概述
MySQL优化器主要工作包括以下几部分:Query Rewrite(包括Outer Join转换等)、const table detection、range analysis、JOIN optimization(顺序和访问方式选择)、plan refinement。这个案例从range analysis开始。
2.2 range analysis
这部分包括所有Range和index merge成本评估(参考1 参考2)。这里,等值表达式也是一个range,所以这里会评估其成本,计算出found records(表示对应的等值表达式,大概会选择出多少条记录)。
本案例中,range analysis会针对A表的条件A.LastName = 'zhou'和B表的B.DepartmentName = 'TBX'分别做分析。其中:
表A A.LastName = 'zhou' found records: 51
表B B.DepartmentName = 'TBX' found records: 1
这两个条件都不是range,但是这里计算的值仍然会存储,在后面的ref访问方式评估的时候使用。这里的值是根据records_in_range接口返回,而对于InnoDB每次调用这个函数都会进行一次索引页的采样,这是一个很消耗性能的操作,对于很多其他的关系数据库是使用"直方图"的统计数据来避免这次操作(相信MariaDB后续版本也将实现直方图统计信息)。
2.3 顺序和访问方式的选择:穷举
MySQL通过枚举所有的left-deep树(也可以说所有的left-deep树就是整个MySQL优化器的搜索空间),来找到最优的执行顺序和访问方式。
2.3.1 排序
优化器先根据found records对所有表进行一个排序,记录少的放前面。所以,这里顺序是B、A。
2.3.2 greedy search
当表的数量较少(少于search_depth,默认是63)的时候,这里直接蜕化为一个穷举搜索,优化器将穷举所有的left-deep树找到最优的执行计划。另外,优化器为了减少因为搜索空间庞大带来巨大的穷举消耗,所以使用了一个"偷懒"的参数prune_level(默认打开),具体如何"偷懒",可以参考JOIN顺序选择的复杂度。不过至少需要有三个表以上的关联才会有"偷懒",所以本案例不适用。
2.3.3 穷举
JOIN的第一个表可以是:A或者B;如果第一个表选择了A,第二个表可以选择B;如果第一个表选择了B,第二个表可以选择A;
因为前面的排序,B表的found records更少,所以JOIN顺序穷举时的第一个表先选择B(这个是有讲究的)。
(*) 选择第一个JOIN的表为B
(**) 确定B表的访问方式
因为B表为第一个表,所以无法使用索引IND_D(B.DepartmentID = A.DepartmentID),而只能使用IND_DN(B.DepartmentName = 'TBX')
使用IND_DN索引的成本计算:1.2;其中IO成本为1。
是否使用全表扫描:这里会比较使用索引的IO成本和全表扫描的IO成本,前者为1,后者为2;所以忽略全表扫描
所以,B表的访问方式ref,使用索引IND_D
(**) 从剩余的表中穷举选出第二个JOIN的表,这里剩余的表为:A
(**) 将A表加入JOIN,并确定其访问方式
可以使用的索引为:`IND_L_D`(A.LastName = 'zhou')或者`IND_DID`(B.DepartmentID = A.DepartmentID)
依次计算使用索引IND_L_D、IND_DID的成本:
(***) IND_L_D A.LastName = 'zhou'
在range analysis阶段给出了A.LastName = 'zhou'对应的记录约为:51。
所以,计算IO成本为:51;ref做IO成本计算时会做一次修正,将其修正为worst_seek(参考)
修正后IO成本为:15,总成本为:25.2
(***) IND_DID B.DepartmentID = A.DepartmentID
这是一个需要知道前面表的结果,才能计算的成本。所以range analysis是无法分析的
这里,我们看到前面表为B,found_record是1,所以A.DepartmentID只需要对应一条记录就可以了
因为具体取值不知道,也没有直方图,所以只能简单依据索引统计信息来计算:
索引IND_DID的列A.DepartmentID的Cardinality为1349,全表记录数为1349
所以,每一个值对应一条记录,而前面表B只有一条记录,所以这里的found_record计算为1*1 = 1
所以IO成本为:1,总成本为1.2
(***) IND_L_D成本为25.2;IND_DID成本为1.2,所以选择后者为当前表的访问方式
(**) 确定A使用索引IND_DID,访问方式为ref
(**) JOIN顺序B|A,总成本为:1.2+1.2 = 2.4
(*) 选择第一个JOIN的表为A
(**) 确定A表的访问方式
因为A表是第一个表,所以无法使用索引`IND_DID`(B.DepartmentID = A.DepartmentID)
那么只能使用索引`IND_L_D`(A.LastName = 'zhou')
使用IND_L_D索引的成本计算,总成本为25.2;参考前面计算;
(**) 这里访问A表的成本已经是25.2,比之前的最优成本2.4要大,忽略该顺序
所以,这次穷举搜索到此结束
把上面的过程简化如下:
(*) 选择第一个JOIN的表为B
(**) 确定B表的访问方式
(**) 从剩余的表中穷举选出第二个JOIN的表,这里剩余的表为:A
(**) 将A表加入JOIN,并确定其访问方式
(***) IND_L_D A.LastName = 'zhou'
(***) IND_DID B.DepartmentID = A.DepartmentID
(***) IND_L_D成本为25.2;IND_DID成本为1.2,所以选择后者为当前表的访问方式
(**) 确定A使用索引IND_DID,访问方式为ref
(**) JOIN顺序B|A,总成本为:1.2+1.2 = 2.4
(*) 选择第一个JOIN的表为A
(**) 确定A表的访问方式
(**) 这里访问A表的成本已经是25.2,比之前的最优成本2.4要大,忽略该顺序
至此,MySQL优化器就确定了所有表的最佳JOIN顺序和访问方式。
3. 测试环境
MySQL: 5.1.48-debug-log innodb plugin 1.0.9 CREATE TABLE `department` (
`DepartmentID` int(11) DEFAULT NULL,
`DepartmentName` varchar(20) DEFAULT NULL,
KEY `IND_D` (`DepartmentID`),
KEY `IND_DN` (`DepartmentName`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk; CREATE TABLE `employee` (
`LastName` varchar(20) DEFAULT NULL,
`DepartmentID` int(11) DEFAULT NULL,
KEY `IND_L_D` (`LastName`),
KEY `IND_DID` (`DepartmentID`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk; for i in `seq 1 1000` ; do mysql -vvv -uroot test -e 'insert into department values (600000*rand(),repeat(char(65+rand()*58),rand()*20))'; done
for i in `seq 1 1000` ; do mysql -vvv -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),600000*rand())'; done for i in `seq 1 50` ; do mysql -vvv -uroot test -e 'insert into employee values ("zhou",27760)'; done
for i in `seq 1 200` ; do mysql -vvv -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),27760)'; done
for i in `seq 1 1` ; do mysql -vvv -uroot test -e 'insert into department values (27760,"TBX")'; done show index from employee;
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+
| employee | 1 | IND_L_D | 1 | LastName | A | 1349 | NULL | NULL | YES | BTREE | |
| employee | 1 | IND_DID | 1 | DepartmentID | A | 1349 | NULL | NULL | YES | BTREE | |
+----------+------------+----------+--------------+--------------+-----------+-------------+----------+--------+------+------------+---------+ show index from department;
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
| department | 1 | IND_D | 1 | DepartmentID | A | 1001 | NULL | NULL | YES | BTREE | |
| department | 1 | IND_DN | 1 | DepartmentName | A | 1001 | NULL | NULL | YES | BTREE | |
+------------+------------+----------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+
4. 构造一个Bad case
因为关联条件中MySQL使用索引统计信息做成本预估,所以数据分布不均匀的时候,就容易做出错误的判断。简单的我们构造下面的案例:
表和索引结构不变,按照下面的方式构造数据:
for i in `seq 1 10000` ; do mysql -uroot test -e 'insert into department values (600000*rand(),repeat(char(65+rand()*58),rand()*20))'; done
for i in `seq 1 10000` ; do mysql -uroot test -e 'insert into employee values (repeat(char(65+rand()*58),rand()*20),600000*rand())'; done for i in `seq 1 1` ; do mysql -uroot test -e 'insert into employee values ("zhou",27760)'; done
for i in `seq 1 10` ; do mysql -uroot test -e 'insert into department values (27760,"TBX")'; done
for i in `seq 1 1000` ; do mysql -uroot test -e 'insert into department values (27760,repeat(char(65+rand()*58),rand()*20))';
done explain
select *
from
employee as A,department as B
where
A.LastName = 'zhou'
and B.DepartmentID = A.DepartmentID
and B.DepartmentName = 'TBX';
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+
| 1 | SIMPLE | A | ref | IND_L_D,IND_DID | IND_L_D | 43 | const | 1 | Using where |
| 1 | SIMPLE | B | ref | IND_D,IND_DN | IND_D | 5 | test.A.DepartmentID | 1 | Using where |
+----+-------------+-------+------+-----------------+---------+---------+---------------------+------+-------------+
可以看到这里,MySQL执行计划对表department使用了索引IND_D,那么A表命中一条记录为(zhou,27760);根据B.DepartmentID=27760将返回1010条记录,然后根据条件DepartmentName = 'TBX'进行过滤。
这里可以看到如果B表选择索引IND_DN,效果要更好,因为DepartmentName = 'TBX'仅仅返回10条记录,再根据条件A.DepartmentID=B.DepartmentID过滤之。
相关链接http://www.cnblogs.com/hellohell/p/5718238.html
0104探究MySQL优化器对索引和JOIN顺序的选择的更多相关文章
- 机智的MySQL优化器 --- is null
[介绍] 工作的越久越到的的问题越多,就越是觉得一些“老话”历久弥新:由于最近的学习计划是深入的学习一遍MySQL优化器:学习过程中的一些成果 也会发布到这里,一来是为了整理自己已经知道的和新学到的, ...
- mysql 优化实例之索引创建
mysql 优化实例之索引创建 优化前: pt-query-degist分析结果: # Query 23: 0.00 QPS, 0.00x concurrency, ID 0x78761E301CC7 ...
- 《Mysql - 优化器是如何选择索引的?》
一:概念 - 在 索引建立之后,一条语句可能会命中多个索引,这时,索引的选择,就会交由 优化器 来选择合适的索引. - 优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句. 二: ...
- MySQL优化器不使用索引的情况
优化器选择不适用索引的情况 有时候,有乎其并没有选择索引而去查找数据,而是通过扫描聚集索引,也就是直接进行全表的扫描来得到数据.这种情况多发生于范围查找.JOIN链接操作等情况.例如 ; 通过SHOW ...
- 数据库 mysql 优化器原理
MySQL查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行. 你的最终目标是提交SELECT语句查找数据行,而不是排除数据行.优化器试图排除数据 ...
- MySQL优化器cost计算
记录MySQL 5.5上,优化器进行cost计算的方法. 第一篇: 单表的cost计算 数据结构: 1. table_share: 包含了表的元数据,其中索引部分: key_info:一个key的结构 ...
- MySQL优化器 --- index_merge
[背景] 对于关系数据库中的一张表,通常来说数据页面的总大小要比较某一个索引占用的页面要大的多(上面说的索引是不包涵主键索引的); 更进一步我们可以推导出,如果我们通过读索引就能解决问题,那么它相比读 ...
- MySQL优化器功能开关optimizer_switch
MySQL 8.0新增特性 use_invisible_indexes:是否使用不可见索引,MySQL 8.0新增可以创建invisible索引,这一开关控制优化器是否使用invisible索引,on ...
- 如何干涉MySQL优化器使用hash join
GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. GreatSQL是MySQL的国产分支版本,使用上与MySQL一致. 前言 实验 总结 前言 数据库的优化器相当于人类的大 ...
随机推荐
- Linux网络相关配置
一.修改网卡相关配置 Linux网络参数是在/etc/sysconfig/network-scripts/ifcfg-eth0中设置,其中ifcfg-eth0表示是第一个网卡,如果还有另外一块网卡,则 ...
- Ionic2系列——在Ionic2中使用ECharts
在群里看到有人问怎么在Ionic2中集成ECharts来显示图表.当时答应说写个blog,简单写下步骤. 在TypeScript中如果要使用第三方库,必须要有d.ts,也就是定义文件,没有这个文件的话 ...
- LinqToXml (一) Create Xml file By Dom /Linq
目前,在xml 应用编程领域比较流行的开发模型是W3C 提供的DOM(文档对象模型),在.net Framework 通过命名空间 System.Xml 对该技术提供了支持.随着Linq to XMl ...
- LAMP布署笔记
源代码软件的优点: 获得最新版,能及时修复bug: 能自行修改和定制: 源代码打包形式: .tar.gz和.tar.bz2格式居多: 完整性校验: md5sum校验工具 ...
- [FromBody]与[FromUrl]
我们都知道,前台请求后台控制的方法有get方法和post方法两种, get:只支持ulr传数据,不管你是手动把参数拼接在Url里面还是写在data里面,只要是用get方法,都会自动绑定到url里面的形 ...
- AlloyTouch Button插件-不再愁click延迟和点击态
移动端不能使用click,因为click会有300ms.所有有了fastclick这样的解决方案.然后fastclick并没有解决点击态(用户点击的瞬间要有及时的外观变化反馈)的问题.hover会有不 ...
- 开发属于自己的yeoman脚手架(generator-reactpackage)
自从前后端开始分离之后,前端项目工程化也显得越来越重要了,之前写过一篇搭建基于Angular+Requirejs+Grunt的前端项目教程,有兴趣的可以点这里去看 但是有些项目可以使用这种方式,但有些 ...
- 移动端图片随手势移动react组件(附移动开发小tips)
这个效果是公司产品中一个用到的效果,用于展示项目的信息,废话少说,先上效果图,代码在最后:),这个组件是在上篇博客中用webpack搭建的环境中完成的http://www.cnblogs.com/wu ...
- fastjson 混淆注意事项
使用fastjson 注意事项,主要表现: 1.加了符号Annotation 的实体类,一使用就会奔溃 2.当有泛型属性时,一使用就奔溃 在调试的时候不会报错,当你要打包签名混淆包的时候,就会出现上述 ...
- swift-可选值
swift的nil和OC有些不一样,OC只有对象可以用nil,swift基础类型(整形,浮点)没有值时也是nil,当初始化的时候,swift可以没有初始值的,产生了可选值Optional. 定义可选值 ...