传送门

题意:

$n$个公交站点,$k$辆车,$1...k$是起始站,$n-k+1..n$是终点站

每个站只能被一辆车停靠一次

每辆车相邻两个停靠位置不能超过$p$

求方案数

$n \le 10^9,\ p \le 8,\ k \le 10$


思考过程中遇到的主要问题是“所有车是同时前进的”,既不能单独考虑一辆车又没法考虑前面的车队后面的影响

正确的做法是同时考虑所有车

每$p$个位置一定每辆车各停一次

$f[i][s]$表示当前在站点$i$,且$i$有车,$s$为车停靠状态

强制规定最靠左(即$i$处)的车先走避免重复

发现状态形成一个图,建立状态之间的邻接矩阵,就可以矩乘来算了

状态最多有$\binom{9}{5}=126$种,我$dfs$状态的时候省去了强制的$1$

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,MOD=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,k,p;
struct Matrix{
int a[N][N];
int* operator [](int x){return a[x];}
Matrix(){memset(a,,sizeof(a));}
}g;
int st[N],m;
inline void mod(int &x){if(x>=MOD) x-=MOD;}
Matrix operator *(Matrix a,Matrix b){
Matrix re;int n=m;
for(int k=;k<n;k++)
for(int i=;i<n;i++) if(a[i][k])
for(int j=;j<n;j++) if(b[k][j])
mod(re[i][j]+=a[i][k]*b[k][j]%MOD);
return re;
}
Matrix operator ^(Matrix a,int b){
Matrix re;int n=m;
for(int i=;i<n;i++) re[i][i]=;
for(;b;b>>=,a=a*a)
if(b&) re=re*a;
return re;
}
void dfs(int d,int num,int s){//printf("Dfs %d %d %d\n",d,num,s);
if(num==) {st[m++]=s;return;}
for(int i=d;i<p-;i++) dfs(i+,num-,s|(<<i));
}
void build(){
for(int i=;i<m;i++)
for(int j=;j<m;j++){
int s= st[i]^(st[j]>>);//printf("build %d %d %d\n",st[i],st[j],s);
if(s == (s&-s)) g[i][j]=;
}
}
int main(){
freopen("in","r",stdin);
n=read();k=read();p=read();
dfs(,k-,);
//for(int i=0;i<m;i++) printf("st %d %d\n",i,st[i]);
build();
//for(int i=0;i<m;i++) for(int j=0;j<m;j++) printf("%d%c",g[i][j],j==m-1?'\n':' ');puts("");
Matrix a,t=g^(n-k); //for(int i=0;i<m;i++) for(int j=0;j<m;j++) printf("%d%c",t[i][j],j==m-1?'\n':' ');;puts("");
a[][]=;
a=a*t;
//for(int i=0;i<m;i++) for(int j=0;j<m;j++) printf("%d%c",a[i][j],j==m-1?'\n':' ');puts("");
printf("%d",a[][]);
}

BZOJ 2004: [Hnoi2010]Bus 公交线路 [DP 状压 矩阵乘法]的更多相关文章

  1. [BZOJ 2004] [Hnoi2010] Bus 公交线路 【状压DP + 矩阵乘法】

    题目链接: BZOJ - 2004 题目分析 看到题目完全不会..于是立即看神犇们的题解. 由于 p<=10 ,所以想到是使用状压.将每个连续的 p 个位置压缩成一个 p 位 2 进制数,其中共 ...

  2. bzoj 2004: [Hnoi2010]Bus 公交线路

    Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距 离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决 ...

  3. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  4. 【BZOJ2004】[Hnoi2010]Bus 公交线路 状压+矩阵乘法

    [BZOJ2004][Hnoi2010]Bus 公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1 ...

  5. 【BZOJ2004】[HNOI2010]Bus 公交线路

    [BZOJ2004][HNOI2010]Bus 公交线路 题面 bzoj 洛谷 题解 $N$特别大$P,K$特别小,一看就是矩阵快速幂+状压 设$f[S]$表示公交车状态为$S$的方案数 这是什么意思 ...

  6. 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法

    题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...

  7. BZOJ2004:[HNOI2010]Bus 公交线路(状压DP,矩阵乘法)

    Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定 ...

  8. [Bzoj2004][Hnoi2010]Bus 公交线路(状压dp&&矩阵加速)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2004 看了很多大佬的博客才理解了这道题,菜到安详QAQ 在不考虑优化的情况下,先推$dp ...

  9. bzoj2004 [Hnoi2010]Bus 公交线路 矩阵快速幂+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2004 题解 如果 \(N\) 没有那么大,考虑把每一位分配给每一辆车. 假设已经分配到了第 \ ...

随机推荐

  1. c++(爬楼梯)

    前两天上网的时候看到一个特别有意思的题目,在这里和朋友们分享一下: 有一个人准备开始爬楼梯,假设楼梯有n个,这个人只允许一次爬一个楼梯或者一次爬两个楼梯,请问有多少种爬法? 在揭晓答案之前,朋友们可以 ...

  2. Monthly update for Dynamics 365 for Operation

    日期 标题, 类别 版本 描述 2017/8/22 Dyn 365 Fin and Ops, Ent ed July 2017 Plat Update 10 Category: Download   ...

  3. JAVA代码实现嵌套层级列表,POI导出嵌套层级列表

    要实现POI导出EXCEL形如 --A1(LV1) ----B1(LV2) ----B2(LV2) ------C1(LV3) ------C2(LV3) ----B3(LV2) --A1(LV1)

  4. Hive_UDF函数中集合对象初始化的注意事项

    UDF函数中定义的集合对象何时初始化 udf函数放在sql中对某个字段进行处理,那么在底层会创建一个该类的对象,这个对象不断的去调用这个evaluate(...)方法,截图如下:   1.1 如果说对 ...

  5. ThinkPHP3.2 实现Mysql数据库备份

    <?php header("Content-type:text/html;charset=utf-8"); //配置信息 $cfg_dbhost = 'localhost'; ...

  6. 没有选择上传的文件或选择的文件大小超出大小(DEDECMS亲身试验成功)

    dedecms升级到5.7后,后台上传压缩包文件,提示"没有选择上传的文件或选择的文件大小超出大小",由于很久都没弄这个系统了,所以最早怎么设置的也忘记了,就上百度搜,基本上有说的 ...

  7. 003_JS基础_面向对象基础

    3.1 对象   引入:在js中表示一个人的信息(name, gender, age)通过var申明三个变量,但是这样使用基本数据类型的变量,他们是互相独立的,没有联系:  此时就需要使用对象,对象是 ...

  8. ThinkPHP5上传图片并压缩为缩略图

    使用thinkphp开发app后端中,需要实现一个处理上传图片队列的功能 这是个上传多图片保存并且需要对其中一张图片进行压缩的功能 (使用的html5 mui框架开发app,如果直接载入原图,app客 ...

  9. P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  10. set&enum小结(database)

    今天发现mysql中有set这种数据类型,工作的业务中也使用到了.网上查阅资料后,小结一下 先总结一下两者的分别 set和enum类似表单中的多选和单选,set和enum在数据库内部是用整数表示的,显 ...