来自FallDream的博客,未经允许,请勿转载,谢谢。

给定数列 {hn}前k项,其后每一项满足
hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k)
其中 a1,a2...ak 为给定数列。请计算 h(n),并将结果对 1000000007 取模输出。
n<=10^9,k<=2000
 
很裸的特征多项式优化矩阵乘法,打个模版。
#include<iostream>
#include<cstdio>
#define mod 1000000007
#define MN 2000
using namespace std;
int X,F;char ch;
inline int read()
{
X = , F = , ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') F = ; ch = getchar();}
while(ch >= '' && ch <= ''){X = X * + ch - '';ch = getchar();}
return F?-X:X;
} int n,k,ans=;
int h[MN+],a[MN*+],b[MN*+],c[MN*+],t[MN*+]; void mul(int*A,int*B)
{
for(int i=;i<=k;i++)
for(int j=;j<=k;j++)
c[i+j-]=(c[i+j-]+1LL*A[i]*B[j])%mod;
for(int i=k<<;i>k;c[i--]=)
for(int j=;j<=k;j++)
c[i-j]=(c[i-j]+1LL*c[i]*t[j])%mod;
for(int i=k;i;i--) A[i]=c[i],c[i]=;
} int main()
{
n=read();k=read();a[]=b[]=;
for(int i=;i<=k;i++)(t[i]=read())<?t[i]+=mod:;
for(int i=;i<=k;i++)(h[i]=read())<?h[i]+=mod:;
if(n<=k)return *printf("%d\n",h[n]);
for(int i=n;i;i>>=,mul(a,a))
if(i&)mul(b,a);
for(int i=;i<=k;i++)ans=(ans+1LL*b[i]*h[i])%mod;
printf("%d\n",ans);
return ;
}

[bzoj4161]Shlw loves matrix I的更多相关文章

  1. [bzoj4162]shlw loves matrix II

    来自FallDream的博客,未经允许,请勿转载,谢谢 给定矩阵k*k的矩阵M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. k<=50 n<=2^10000 考 ...

  2. [BZOJ]4162: shlw loves matrix II

    Time Limit: 30 Sec  Memory Limit: 128 MB Description 给定矩阵 M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. Inpu ...

  3. bzoj4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计 ...

  4. BZOJ4162:shlw loves matrix II

    传送门 利用Cayley-Hamilton定理,用插值法求出特征多项式 \(P(x)\) 然后 \(M^n\equiv M^n(mod~P(x))(mod~P(x))\) 然后就多项式快速幂+取模 最 ...

  5. 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)

    [BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...

  6. 【BZOJ4161】Shlw loves matrixI

    题目描述 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 h(n),并将 ...

  7. bzoj 4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 ...

  8. BZOJ 4161 Shlw loves matrixI ——特征多项式

    矩阵乘法递推的新姿势. 叉姐论文里有讲到 利用特征多项式进行递推,然后可以做到k^2logn #include <cstdio> #include <cstring> #inc ...

  9. bzoj 4161 Shlw loves matrixI【常系数线性齐次递推】

    并不会递推,不过板子挺好背的,只要是类似的递推都能用,但是注意c数组不能使负数 如果除了递推还有常数项的话,就用f[i]-f[i-1]的方式消掉常数项(然后多一个f[i-1]的项) #include& ...

随机推荐

  1. scrapy 模拟登陆

    import scrapy import urllib.request from scrapy.http import Request,FormRequest class LoginspdSpider ...

  2. Linux下Apache服务的查看和启动

      cd到/etc/rc.d/init.d/目录,并列出该目录下的所有文件,看看是否有httpd   使用httpd -v查看已经安装的httpd的版本   使用rpm -qa | grep http ...

  3. Flask 扩展 表单

    pip install flask-wtf 一个简单的表单 from flask_wtf import Form from wtforms import StringField from wtform ...

  4. vue-router 组件实例被复用问题

    最近在开发过程中遇到如下问题: 当前路由是这样的 http://127.0.0.1:3010/order?keywords=22 只改变keywords的值,路由不跳转 http://127.0.0. ...

  5. nyoj 正数性质

    整数性质 时间限制:500 ms  |  内存限制:65535 KB 难度:1   描述 我们知道,在数学中,对于任意两个正整数a和b,必定存在一对整数s.t使得sa+tb=gcd(a,b).   输 ...

  6. 使用freemaker 导出word 含多张图片,若无图片则显示文本信息

    1.使用的Microsoft Office 2007,添加一个无边框的表格,并插入一张图片,最后另存为编码utf-8,一开始保存的word xml格式的,图片的base64编码位于文档最后,暂时没有找 ...

  7. SpringCloud的应用发布(四)顺序启动各个应用

    一.部署应用 二.启动应用(注意顺序) 三.观察效果 1.查看进程和日志 ps -ef | grep java tail -f AppYml.txt 2.验证功能

  8. python入门(6)输入和输出

    python入门(6)输入和输出 输出 >>> print 'hello, world' >>> print 'The quick brown fox', 'jum ...

  9. bootstrap 一个简单的登陆页面

    效果如图:用bootstrap 写的一个简单的登陆 一.修改样式 样式可以自己调整,例如换个背景色之类的,修改 background-color属性就可以 #from { background-col ...

  10. C#微信公众号——本地调试

    测试微信,因为要与微信服务器进行交互,所以必须要是外网地址,实现本地调试首先需要解决的问题就是外网问题,这个我前面的文章有介绍,这里就不再详细介绍了,网址http://www.cnblogs.com/ ...