/*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 7 of the cookbook:
Computer Vision Programming using the OpenCV Library.
by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/ #if !defined LINEF
#define LINEF #include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#define PI 3.1415926 class LineFinder { private: // original image
cv::Mat img; // vector containing the end points
// of the detected lines
std::vector<cv::Vec4i> lines; // accumulator resolution parameters
double deltaRho;
double deltaTheta; // minimum number of votes that a line
// must receive before being considered
int minVote; // min length for a line
double minLength; // max allowed gap along the line
double maxGap; public: // Default accumulator resolution is 1 pixel by 1 degree
// no gap, no mimimum length
LineFinder() : deltaRho(1), deltaTheta(PI/180), minVote(10), minLength(0.), maxGap(0.) {} // Set the resolution of the accumulator
void setAccResolution(double dRho, double dTheta)
{ deltaRho= dRho;
deltaTheta= dTheta;
} // Set the minimum number of votes
void setMinVote(int minv)
{ minVote= minv;
} // Set line length and gap
void setLineLengthAndGap(double length, double gap)
{ minLength= length;
maxGap= gap;
} // Apply probabilistic Hough Transform
std::vector<cv::Vec4i> findLines(cv::Mat& binary)
{ lines.clear();
cv::HoughLinesP(binary,lines,deltaRho,deltaTheta,minVote, minLength, maxGap); return lines;
} // Draw the detected lines on an image
void drawDetectedLines(cv::Mat &image, cv::Scalar color=cv::Scalar(255,255,255))
{ // Draw the lines
std::vector<cv::Vec4i>::const_iterator it2= lines.begin(); while (it2!=lines.end()) { cv::Point pt1((*it2)[0],(*it2)[1]);
cv::Point pt2((*it2)[2],(*it2)[3]); cv::line( image, pt1, pt2, color); ++it2;
}
} // Eliminates lines that do not have an orientation equals to
// the ones specified in the input matrix of orientations
// At least the given percentage of pixels on the line must
// be within plus or minus delta of the corresponding orientation
std::vector<cv::Vec4i> removeLinesOfInconsistentOrientations(
const cv::Mat &orientations, double percentage, double delta)
{ std::vector<cv::Vec4i>::iterator it= lines.begin(); // check all lines
while (it!=lines.end()) { // end points
int x1= (*it)[0];
int y1= (*it)[1];
int x2= (*it)[2];
int y2= (*it)[3]; // line orientation + 90o to get the parallel line
double ori1= atan2(static_cast<double>(y1-y2),static_cast<double>(x1-x2))+PI/2;
if (ori1>PI) ori1= ori1-2*PI; double ori2= atan2(static_cast<double>(y2-y1),static_cast<double>(x2-x1))+PI/2;
if (ori2>PI) ori2= ori2-2*PI; // for all points on the line
cv::LineIterator lit(orientations,cv::Point(x1,y1),cv::Point(x2,y2));
int i,count=0;
for(i = 0, count=0; i < lit.count; i++, ++lit) { float ori= *(reinterpret_cast<float *>(*lit)); // is line orientation similar to gradient orientation ?
if (std::min(fabs(ori-ori1),fabs(ori-ori2))<delta)
count++; } double consistency= count/static_cast<double>(i); // set to zero lines of inconsistent orientation
if (consistency < percentage) { (*it)[0]=(*it)[1]=(*it)[2]=(*it)[3]=0; } ++it;
} return lines;
}
}; #endif
// HoughLines.cpp : 定义控制台应用程序的入口点。
// // findContours.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" /*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 7 of the cookbook:
Computer Vision Programming using the OpenCV Library.
by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/ #include <iostream>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp> #include "HoughLines.h" #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib") #define PI 3.1415926 int main()
{
// Read input image
cv::Mat image= cv::imread("road.jpg",0);
if (!image.data)
return 0; // Display the image
cv::namedWindow("Original Image");
cv::imshow("Original Image",image); // Apply Canny algorithm
cv::Mat contours;
cv::Canny(image,contours,125,350);
cv::Mat contoursInv;
cv::threshold(contours,contoursInv,128,255,cv::THRESH_BINARY_INV); // Display the image of contours
cv::namedWindow("Canny Contours");
cv::imshow("Canny Contours",contoursInv); // Hough tranform for line detection
std::vector<cv::Vec2f> lines;
cv::HoughLines(contours,lines,1,PI/180,60); // Draw the lines
cv::Mat result(contours.rows,contours.cols,CV_8U,cv::Scalar(255));
image.copyTo(result); std::cout << "Lines detected: " << lines.size() << std::endl; std::vector<cv::Vec2f>::const_iterator it= lines.begin();
while (it!=lines.end())
{ float rho= (*it)[0]; // first element is distance rho
float theta= (*it)[1]; // second element is angle theta if (theta < PI/4. || theta > 3.*PI/4.) { // ~vertical line // point of intersection of the line with first row
cv::Point pt1(rho/cos(theta),0);
// point of intersection of the line with last row
cv::Point pt2((rho-result.rows*sin(theta))/cos(theta),result.rows);
// draw a white line
cv::line( result, pt1, pt2, cv::Scalar(255), 1); } else { // ~horizontal line // point of intersection of the line with first column
cv::Point pt1(0,rho/sin(theta));
// point of intersection of the line with last column
cv::Point pt2(result.cols,(rho-result.cols*cos(theta))/sin(theta));
// draw a white line
cv::line( result, pt1, pt2, cv::Scalar(255), 1);
} std::cout << "line: (" << rho << "," << theta << ")\n"; ++it;
} // Display the detected line image
cv::namedWindow("Detected Lines with Hough");
cv::imshow("Detected Lines with Hough",result); // Create LineFinder instance
LineFinder ld; // Set probabilistic Hough parameters
ld.setLineLengthAndGap(100,20);
ld.setMinVote(80); // Detect lines
std::vector<cv::Vec4i> li= ld.findLines(contours);
ld.drawDetectedLines(image);
cv::namedWindow("Detected Lines with HoughP");
cv::imshow("Detected Lines with HoughP",image); cv::waitKey();
return 0;
}

实现效果:

OpenCV 直线检测的更多相关文章

  1. opencv直线检测在c#、Android和ios下的实现方法

    opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/ ...

  2. Python+OpenCV图像处理(十四)—— 直线检测

    简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线 ...

  3. opencv学习笔记霍夫变换——直线检测

    参考大佬博文:blog.csdn.net/jia20003/article/details/7724530 lps-683.iteye.com/blog/2254368 openCV里有两个函数(比较 ...

  4. 【python+opencv】直线检测+圆检测

     Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...

  5. opencv:霍夫直线检测

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

  6. 【CImg】霍夫变换——直线检测

    霍夫变换——直线检测 考古debug,其实很久之前就解决的bug......一直忘记过来改文章....欸 =============================原文================ ...

  7. OpenCV轮廓检测,计算物体旋转角度

    效果还是有点问题的,希望大家共同探讨一下 // FindRotation-angle.cpp : 定义控制台应用程序的入口点. // // findContours.cpp : 定义控制台应用程序的入 ...

  8. python实现直线检测

    目录: (一)原理 (二)代码(标准霍夫线变换,统计概率霍夫线变换) (一)原理 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也 ...

  9. Matlab 霍夫变换 ( Hough Transform) 直线检测

    PS:好久没更新,因为期末到了,拼命复习中.复习久了觉得枯燥,玩玩儿霍夫变换直线检测 霍夫变换的基本原理不难,即便是初中生也很容易理解(至少在直线检测上是这样子的). 霍夫变换直线检测的基本原理:(不 ...

随机推荐

  1. J2EE规范标准

    J2EE是一个很大的平台体系,提供了很多服务.程序接口.协议等.这么庞大的体系必须要由一系列的标准进行规范,不然将会一片混乱.通过这些规范好的接口来开发程序将会使程序更加强壮.更加有生命力.总的来说, ...

  2. Android开发基础规范(二)

    转载请把头部出处链接和尾部二维码一起转载,本文出自逆流的鱼yuiop:http://blog.csdn.net/hejjunlin/article/details/52614696 前言:Androi ...

  3. springMVC+Hibernate4+spring整合实例二(实例代码部分)

    UserController.java 代码: package com.edw.controller; import java.io.IOException; import java.io.Print ...

  4. Python中使用rrdtool结合Django进行带宽监控

    我们有个网关需要做下带宽监控,能获取这个数据的唯一方法就是登录到管理界面查看.然后咱就写了个模拟登录的爬虫,定时抓取数据用rrdtool存储,最后通过Django来展示.这里就涉及了python的rr ...

  5. Android中常用开发工具类—持续更新...

    一.自定义ActionBar public class ActionBarTool { public static void setActionBarLayout(Activity act,Conte ...

  6. 关闭Win10自动更新

    使用过Windows10系统的小伙伴们都清楚,在Windows10中强制开启了自动更新功能,我们无法通过常规的办法关闭自动更新功能,那么我们该怎么去关闭自动更新呢?欢迎速来围观我的经验啦. 工具/原料 ...

  7. EBS系统克隆

     术语 克隆是对已有的Oracle应用系统创建一份拷贝的过程.克隆一个Oracle应用系统有几种不同的情况,包括: l   标准克隆 – 复制一个已有的Oracle应用系统生成一份拷贝,例如对生产 ...

  8. Servlet处理流程分析-Servlet学习之旅(二)

    tomcat的处理处理客户端流程分析 tomcat即是servlet容器也具有web服务器的功能,即也具有html页面的功能. 1.首先客户端会将html请求发给tomcat内置的web服务器 2.w ...

  9. 剑指Offer——网易笔试之解救小易——曼哈顿距离的典型应用

    剑指Offer--网易笔试之解救小易--曼哈顿距离的典型应用 前言 首先介绍一下曼哈顿,曼哈顿是一个极为繁华的街区,高楼林立,街道纵横,从A地点到达B地点没有直线路径,必须绕道,而且至少要经C地点,走 ...

  10. 解决android 大图OOM的两种方法

    最近做程序中,需要用到一张大图.这张图片是2880*2180大小的,在我开发所用的华为3C手机上显示没有问题,但是给米3装的时候,一打开马上报OOM错误.给nexus5装,则是图片无法出来,DDMS中 ...