OpenCV 直线检测
/*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 7 of the cookbook:
Computer Vision Programming using the OpenCV Library.
by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/ #if !defined LINEF
#define LINEF #include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#define PI 3.1415926 class LineFinder { private: // original image
cv::Mat img; // vector containing the end points
// of the detected lines
std::vector<cv::Vec4i> lines; // accumulator resolution parameters
double deltaRho;
double deltaTheta; // minimum number of votes that a line
// must receive before being considered
int minVote; // min length for a line
double minLength; // max allowed gap along the line
double maxGap; public: // Default accumulator resolution is 1 pixel by 1 degree
// no gap, no mimimum length
LineFinder() : deltaRho(1), deltaTheta(PI/180), minVote(10), minLength(0.), maxGap(0.) {} // Set the resolution of the accumulator
void setAccResolution(double dRho, double dTheta)
{ deltaRho= dRho;
deltaTheta= dTheta;
} // Set the minimum number of votes
void setMinVote(int minv)
{ minVote= minv;
} // Set line length and gap
void setLineLengthAndGap(double length, double gap)
{ minLength= length;
maxGap= gap;
} // Apply probabilistic Hough Transform
std::vector<cv::Vec4i> findLines(cv::Mat& binary)
{ lines.clear();
cv::HoughLinesP(binary,lines,deltaRho,deltaTheta,minVote, minLength, maxGap); return lines;
} // Draw the detected lines on an image
void drawDetectedLines(cv::Mat &image, cv::Scalar color=cv::Scalar(255,255,255))
{ // Draw the lines
std::vector<cv::Vec4i>::const_iterator it2= lines.begin(); while (it2!=lines.end()) { cv::Point pt1((*it2)[0],(*it2)[1]);
cv::Point pt2((*it2)[2],(*it2)[3]); cv::line( image, pt1, pt2, color); ++it2;
}
} // Eliminates lines that do not have an orientation equals to
// the ones specified in the input matrix of orientations
// At least the given percentage of pixels on the line must
// be within plus or minus delta of the corresponding orientation
std::vector<cv::Vec4i> removeLinesOfInconsistentOrientations(
const cv::Mat &orientations, double percentage, double delta)
{ std::vector<cv::Vec4i>::iterator it= lines.begin(); // check all lines
while (it!=lines.end()) { // end points
int x1= (*it)[0];
int y1= (*it)[1];
int x2= (*it)[2];
int y2= (*it)[3]; // line orientation + 90o to get the parallel line
double ori1= atan2(static_cast<double>(y1-y2),static_cast<double>(x1-x2))+PI/2;
if (ori1>PI) ori1= ori1-2*PI; double ori2= atan2(static_cast<double>(y2-y1),static_cast<double>(x2-x1))+PI/2;
if (ori2>PI) ori2= ori2-2*PI; // for all points on the line
cv::LineIterator lit(orientations,cv::Point(x1,y1),cv::Point(x2,y2));
int i,count=0;
for(i = 0, count=0; i < lit.count; i++, ++lit) { float ori= *(reinterpret_cast<float *>(*lit)); // is line orientation similar to gradient orientation ?
if (std::min(fabs(ori-ori1),fabs(ori-ori2))<delta)
count++; } double consistency= count/static_cast<double>(i); // set to zero lines of inconsistent orientation
if (consistency < percentage) { (*it)[0]=(*it)[1]=(*it)[2]=(*it)[3]=0; } ++it;
} return lines;
}
}; #endif
// HoughLines.cpp : 定义控制台应用程序的入口点。
// // findContours.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" /*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 7 of the cookbook:
Computer Vision Programming using the OpenCV Library.
by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/ #include <iostream>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp> #include "HoughLines.h" #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib") #define PI 3.1415926 int main()
{
// Read input image
cv::Mat image= cv::imread("road.jpg",0);
if (!image.data)
return 0; // Display the image
cv::namedWindow("Original Image");
cv::imshow("Original Image",image); // Apply Canny algorithm
cv::Mat contours;
cv::Canny(image,contours,125,350);
cv::Mat contoursInv;
cv::threshold(contours,contoursInv,128,255,cv::THRESH_BINARY_INV); // Display the image of contours
cv::namedWindow("Canny Contours");
cv::imshow("Canny Contours",contoursInv); // Hough tranform for line detection
std::vector<cv::Vec2f> lines;
cv::HoughLines(contours,lines,1,PI/180,60); // Draw the lines
cv::Mat result(contours.rows,contours.cols,CV_8U,cv::Scalar(255));
image.copyTo(result); std::cout << "Lines detected: " << lines.size() << std::endl; std::vector<cv::Vec2f>::const_iterator it= lines.begin();
while (it!=lines.end())
{ float rho= (*it)[0]; // first element is distance rho
float theta= (*it)[1]; // second element is angle theta if (theta < PI/4. || theta > 3.*PI/4.) { // ~vertical line // point of intersection of the line with first row
cv::Point pt1(rho/cos(theta),0);
// point of intersection of the line with last row
cv::Point pt2((rho-result.rows*sin(theta))/cos(theta),result.rows);
// draw a white line
cv::line( result, pt1, pt2, cv::Scalar(255), 1); } else { // ~horizontal line // point of intersection of the line with first column
cv::Point pt1(0,rho/sin(theta));
// point of intersection of the line with last column
cv::Point pt2(result.cols,(rho-result.cols*cos(theta))/sin(theta));
// draw a white line
cv::line( result, pt1, pt2, cv::Scalar(255), 1);
} std::cout << "line: (" << rho << "," << theta << ")\n"; ++it;
} // Display the detected line image
cv::namedWindow("Detected Lines with Hough");
cv::imshow("Detected Lines with Hough",result); // Create LineFinder instance
LineFinder ld; // Set probabilistic Hough parameters
ld.setLineLengthAndGap(100,20);
ld.setMinVote(80); // Detect lines
std::vector<cv::Vec4i> li= ld.findLines(contours);
ld.drawDetectedLines(image);
cv::namedWindow("Detected Lines with HoughP");
cv::imshow("Detected Lines with HoughP",image); cv::waitKey();
return 0;
}
实现效果:
OpenCV 直线检测的更多相关文章
- opencv直线检测在c#、Android和ios下的实现方法
opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/ ...
- Python+OpenCV图像处理(十四)—— 直线检测
简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线 ...
- opencv学习笔记霍夫变换——直线检测
参考大佬博文:blog.csdn.net/jia20003/article/details/7724530 lps-683.iteye.com/blog/2254368 openCV里有两个函数(比较 ...
- 【python+opencv】直线检测+圆检测
Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...
- opencv:霍夫直线检测
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...
- 【CImg】霍夫变换——直线检测
霍夫变换——直线检测 考古debug,其实很久之前就解决的bug......一直忘记过来改文章....欸 =============================原文================ ...
- OpenCV轮廓检测,计算物体旋转角度
效果还是有点问题的,希望大家共同探讨一下 // FindRotation-angle.cpp : 定义控制台应用程序的入口点. // // findContours.cpp : 定义控制台应用程序的入 ...
- python实现直线检测
目录: (一)原理 (二)代码(标准霍夫线变换,统计概率霍夫线变换) (一)原理 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也 ...
- Matlab 霍夫变换 ( Hough Transform) 直线检测
PS:好久没更新,因为期末到了,拼命复习中.复习久了觉得枯燥,玩玩儿霍夫变换直线检测 霍夫变换的基本原理不难,即便是初中生也很容易理解(至少在直线检测上是这样子的). 霍夫变换直线检测的基本原理:(不 ...
随机推荐
- Erlang简单并行服务器
Erlang简单并行服务器(金庆的专栏)Erlang并行服务器为每个Tcp连接创建对应的连接进程,处理客户端数据.参考 Erlang程序设计(第2版)17.1.3 顺序和并行服务器并行服务器的诀窍是: ...
- 六星经典CSAPP笔记(2)信息的操作和表示
2.Representing and Manipulating Information 本章从二进制.字长.字节序,一直讲到布尔代数.位运算,最后无符号.有符号整数.浮点数的表示和运算.诚然有些地方的 ...
- Linux目录架构详解
Linux和Windows操作系统的显著区别之一就是目录架构的不同.Linux操作系统的目录架构遵循文件系统层级结构标准.不知你是否使用ls命令浏览过Linux的根目录"/",亲爱 ...
- JDK的安装以及配置
JDK的安装以及配置 JDK(Java Development Kit),顾名思义,是 Java 语言的软件开发工具包(SDK). Android发开使用Java语言,所以装JDK是Android开发 ...
- 【ShaderToy】水彩画
写在前面 好久没有更新shadertoy系列了,我万万没想到有童鞋还惦记着它...之前说过希望可以一周更新一篇,现在看来是不怎么可能了,一个月更新一篇的希望比较大(不要再相信我了...) 我把之前实现 ...
- 【移动开发】SparseArray替代HashMap
SparseArray是android里为<Interger,Object>这样的Hashmap而专门写的class,目的是提高效率,其核心是折半查找函数(binarySearch). p ...
- MacOS的菜单状态栏App添加饼型进度
猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/52075418 ...
- Linux中printk()实例
新建hello.c #include <linux/kernel.h> #include <linux/module.h> int init_module(void) { pr ...
- 漫谈android系统(4)bring up panel
点击打开链接 版权声明: 作者:alex wang 版权:本文版权归作者和CSDN共有 转载:欢迎转载,为了保存作者的创作热情,请按要求[转载],谢谢 要求:未经作者同意,必须保留此段声明:必须在文章 ...
- Tensorflow使用Cmake在Windows下生成VisualStudio工程并编译
传送门: https://github.com/tensorflow/tensorflow/tree/r0.12/tensorflow/contrib/cmake http://www.udpwork ...