OpenCV 直线检测
/*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 7 of the cookbook:
Computer Vision Programming using the OpenCV Library.
by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/ #if !defined LINEF
#define LINEF #include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#define PI 3.1415926 class LineFinder { private: // original image
cv::Mat img; // vector containing the end points
// of the detected lines
std::vector<cv::Vec4i> lines; // accumulator resolution parameters
double deltaRho;
double deltaTheta; // minimum number of votes that a line
// must receive before being considered
int minVote; // min length for a line
double minLength; // max allowed gap along the line
double maxGap; public: // Default accumulator resolution is 1 pixel by 1 degree
// no gap, no mimimum length
LineFinder() : deltaRho(1), deltaTheta(PI/180), minVote(10), minLength(0.), maxGap(0.) {} // Set the resolution of the accumulator
void setAccResolution(double dRho, double dTheta)
{ deltaRho= dRho;
deltaTheta= dTheta;
} // Set the minimum number of votes
void setMinVote(int minv)
{ minVote= minv;
} // Set line length and gap
void setLineLengthAndGap(double length, double gap)
{ minLength= length;
maxGap= gap;
} // Apply probabilistic Hough Transform
std::vector<cv::Vec4i> findLines(cv::Mat& binary)
{ lines.clear();
cv::HoughLinesP(binary,lines,deltaRho,deltaTheta,minVote, minLength, maxGap); return lines;
} // Draw the detected lines on an image
void drawDetectedLines(cv::Mat &image, cv::Scalar color=cv::Scalar(255,255,255))
{ // Draw the lines
std::vector<cv::Vec4i>::const_iterator it2= lines.begin(); while (it2!=lines.end()) { cv::Point pt1((*it2)[0],(*it2)[1]);
cv::Point pt2((*it2)[2],(*it2)[3]); cv::line( image, pt1, pt2, color); ++it2;
}
} // Eliminates lines that do not have an orientation equals to
// the ones specified in the input matrix of orientations
// At least the given percentage of pixels on the line must
// be within plus or minus delta of the corresponding orientation
std::vector<cv::Vec4i> removeLinesOfInconsistentOrientations(
const cv::Mat &orientations, double percentage, double delta)
{ std::vector<cv::Vec4i>::iterator it= lines.begin(); // check all lines
while (it!=lines.end()) { // end points
int x1= (*it)[0];
int y1= (*it)[1];
int x2= (*it)[2];
int y2= (*it)[3]; // line orientation + 90o to get the parallel line
double ori1= atan2(static_cast<double>(y1-y2),static_cast<double>(x1-x2))+PI/2;
if (ori1>PI) ori1= ori1-2*PI; double ori2= atan2(static_cast<double>(y2-y1),static_cast<double>(x2-x1))+PI/2;
if (ori2>PI) ori2= ori2-2*PI; // for all points on the line
cv::LineIterator lit(orientations,cv::Point(x1,y1),cv::Point(x2,y2));
int i,count=0;
for(i = 0, count=0; i < lit.count; i++, ++lit) { float ori= *(reinterpret_cast<float *>(*lit)); // is line orientation similar to gradient orientation ?
if (std::min(fabs(ori-ori1),fabs(ori-ori2))<delta)
count++; } double consistency= count/static_cast<double>(i); // set to zero lines of inconsistent orientation
if (consistency < percentage) { (*it)[0]=(*it)[1]=(*it)[2]=(*it)[3]=0; } ++it;
} return lines;
}
}; #endif
// HoughLines.cpp : 定义控制台应用程序的入口点。
// // findContours.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" /*------------------------------------------------------------------------------------------*\
This file contains material supporting chapter 7 of the cookbook:
Computer Vision Programming using the OpenCV Library.
by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify,
and distribute this source code, or portions thereof, for any purpose, without fee,
subject to the restriction that the copyright notice may not be removed
or altered from any source or altered source distribution.
The software is released on an as-is basis and without any warranties of any kind.
In particular, the software is not guaranteed to be fault-tolerant or free from failure.
The author disclaims all warranties with regard to this software, any use,
and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name
\*------------------------------------------------------------------------------------------*/ #include <iostream>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp> #include "HoughLines.h" #pragma comment(lib,"opencv_core2410d.lib")
#pragma comment(lib,"opencv_highgui2410d.lib")
#pragma comment(lib,"opencv_imgproc2410d.lib") #define PI 3.1415926 int main()
{
// Read input image
cv::Mat image= cv::imread("road.jpg",0);
if (!image.data)
return 0; // Display the image
cv::namedWindow("Original Image");
cv::imshow("Original Image",image); // Apply Canny algorithm
cv::Mat contours;
cv::Canny(image,contours,125,350);
cv::Mat contoursInv;
cv::threshold(contours,contoursInv,128,255,cv::THRESH_BINARY_INV); // Display the image of contours
cv::namedWindow("Canny Contours");
cv::imshow("Canny Contours",contoursInv); // Hough tranform for line detection
std::vector<cv::Vec2f> lines;
cv::HoughLines(contours,lines,1,PI/180,60); // Draw the lines
cv::Mat result(contours.rows,contours.cols,CV_8U,cv::Scalar(255));
image.copyTo(result); std::cout << "Lines detected: " << lines.size() << std::endl; std::vector<cv::Vec2f>::const_iterator it= lines.begin();
while (it!=lines.end())
{ float rho= (*it)[0]; // first element is distance rho
float theta= (*it)[1]; // second element is angle theta if (theta < PI/4. || theta > 3.*PI/4.) { // ~vertical line // point of intersection of the line with first row
cv::Point pt1(rho/cos(theta),0);
// point of intersection of the line with last row
cv::Point pt2((rho-result.rows*sin(theta))/cos(theta),result.rows);
// draw a white line
cv::line( result, pt1, pt2, cv::Scalar(255), 1); } else { // ~horizontal line // point of intersection of the line with first column
cv::Point pt1(0,rho/sin(theta));
// point of intersection of the line with last column
cv::Point pt2(result.cols,(rho-result.cols*cos(theta))/sin(theta));
// draw a white line
cv::line( result, pt1, pt2, cv::Scalar(255), 1);
} std::cout << "line: (" << rho << "," << theta << ")\n"; ++it;
} // Display the detected line image
cv::namedWindow("Detected Lines with Hough");
cv::imshow("Detected Lines with Hough",result); // Create LineFinder instance
LineFinder ld; // Set probabilistic Hough parameters
ld.setLineLengthAndGap(100,20);
ld.setMinVote(80); // Detect lines
std::vector<cv::Vec4i> li= ld.findLines(contours);
ld.drawDetectedLines(image);
cv::namedWindow("Detected Lines with HoughP");
cv::imshow("Detected Lines with HoughP",image); cv::waitKey();
return 0;
}
实现效果:
OpenCV 直线检测的更多相关文章
- opencv直线检测在c#、Android和ios下的实现方法
opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/ ...
- Python+OpenCV图像处理(十四)—— 直线检测
简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线 ...
- opencv学习笔记霍夫变换——直线检测
参考大佬博文:blog.csdn.net/jia20003/article/details/7724530 lps-683.iteye.com/blog/2254368 openCV里有两个函数(比较 ...
- 【python+opencv】直线检测+圆检测
Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...
- opencv:霍夫直线检测
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...
- 【CImg】霍夫变换——直线检测
霍夫变换——直线检测 考古debug,其实很久之前就解决的bug......一直忘记过来改文章....欸 =============================原文================ ...
- OpenCV轮廓检测,计算物体旋转角度
效果还是有点问题的,希望大家共同探讨一下 // FindRotation-angle.cpp : 定义控制台应用程序的入口点. // // findContours.cpp : 定义控制台应用程序的入 ...
- python实现直线检测
目录: (一)原理 (二)代码(标准霍夫线变换,统计概率霍夫线变换) (一)原理 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也 ...
- Matlab 霍夫变换 ( Hough Transform) 直线检测
PS:好久没更新,因为期末到了,拼命复习中.复习久了觉得枯燥,玩玩儿霍夫变换直线检测 霍夫变换的基本原理不难,即便是初中生也很容易理解(至少在直线检测上是这样子的). 霍夫变换直线检测的基本原理:(不 ...
随机推荐
- ORACLE时间日期格式使用总结(参考网上资料汇总)
Oracle时间日期操作 sysdate+(5/24/60/60) 在系统时间基础上延迟5秒 sysdate+5/24/60 在系统时间基础上延迟5分钟 sysdate+5/24 在系统时间基础上延迟 ...
- PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes
http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑 ...
- Android Multimedia框架总结(十四)Camera框架初识及自定义相机案例
转载请把头部出处链接和尾部二维码一起转载,本文出自逆流的鱼yuiop:http://blog.csdn.net/hejjunlin/article/details/52738492 前言:国庆节告一段 ...
- 使用Apache的ab进行压力测试
概述 ab是apache自带的压力测试工具,当安装完apache的时候,就可以在bin下面找到ab然后进行apache 负载压力测试. 后台测试开发中,常用的压力测试服务,php一般选择xampp,下 ...
- P2P系统,一致性哈希和DHT
数据网格产品经常会使用P2P进行通信,借此机会系统地学习一下P2P网络和其资源搜索策略. 1 P2P网络架构 谈到P2P就涉及到一个概念:Overlay Network(覆盖网络).所谓覆盖网络是应用 ...
- Android设置item的行间距,以及去掉分割线方法
1.设置item的行间距: 可以在xml布局文件中的listView下设置xml属性: android:divider="#00000000" android:dividerHei ...
- memcached实战系列(三)memcached命令使用
memcached命令的使用,在这里我们最好了解一下命令的含义,对命令有一个大致的了解,在了解的基础上进行使用.这里的命名是常用的crud命令的演示. 1.1.1. memcached命令的格式 标准 ...
- Servlet处理流程分析-Servlet学习之旅(二)
tomcat的处理处理客户端流程分析 tomcat即是servlet容器也具有web服务器的功能,即也具有html页面的功能. 1.首先客户端会将html请求发给tomcat内置的web服务器 2.w ...
- How to Find the Self Service Related File Location and Versions
How to Find the Self Service Related File Location and Versions (文档 ID 781385.1) In this Document ...
- tomcat如何路由映射网址
对于web容器来说,根据请求客户端路径路由到对应的资源属于其核心功能,假设用户在自己电脑上使用浏览器输入网址http://www.test.com/test/index.jsp,报文通过互联网网络到达 ...