1013. Battle Over Cities (25)
题目如下:
It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities
connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.
For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city1 is
occupied by the enemy, we must have 1 highway repaired, that is the highway city2-city3.
Input
Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow,
each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.
Output
For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.
Sample Input
3 2 3
1 2
1 3
1 2 3
Sample Output
1
0
0
看到这个题目,我的第一想法是用DFS来处理,利用DFS以每个结点为起点进行搜索,找出不能访问到所有结点的结点,这些结点构成的独立区域便是那些需要额外修建公路的区域,但有个问题是如果独立区域有多个结点,在计数时会出现重复,但是可以发现,在对某个结点进行DFS时,所有和它连通的结点都被访问到了,因此不必担心重复计数的问题。最后独立区域的个数-1即为要修建公路的条数。
#include<stdio.h>
#include<string.h> #define max 1001
int edge[max][max];
int visited[max];
int N, M, K; void DFS(int start)
{
visited[start] = 1;
int i;
for (i = 1; i <= N; i++)
{
if (!visited[i] && edge[i][start] == 1)
DFS(i);
}
} int main()
{
int i, j;
int a, b;
scanf("%d%d%d", &N, &M, &K);
for (i = 0; i<M; i++)
{
scanf("%d%d", &a, &b);
edge[a][b] = 1;
edge[b][a] = 1;
}
int temp;
int num;
for (i = 0; i<K; i++)
{
num = 0;
scanf("%d", &temp);
memset(visited, 0, sizeof(visited));
visited[temp] = 1;
for (j = 1; j <= N; j++)
{
if (visited[j] == 0)
{
DFS(j);
num++;
}
}
if (num == 0) printf("0\n");
else printf("%d\n", num - 1);
} }
另外一种方法是使用并查集,将所有有边的结点并入同一个集合,并且在查找父节点时进行路径压缩,保证在一个集合中的所有父节点均指向祖先节点,这时候只要计数祖先节点的数目,就可以找出独立区域的个数。
这个方法是从sunbaigui的博客上学到的,下面是他的算法,我在理解的基础上加了些注释,方便阅读。
#include<iostream>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<algorithm>
#include<string>
#include<string.h>
using namespace std; int n;//number of city
int m;//number of edge
int k;//number of query
typedef struct Edge
{
int v;
Edge(int _v) :v(_v){};
}Edge;
typedef struct Node
{
int parent;
}Node;
vector<Node> city;
void InitSet()
{
city.resize(n); // 使用vector的resize方法可以重设vector大小
for (int i = 0; i < n; ++i)
city[i].parent = i; // 初始化每个人的父节点为自己
}
void CompressSet(int top, int x) // 压缩路径的目的是让x的父节点指向top
{
if (city[x].parent != top) // 如果x的父节点不指向top,应当让它指向top,注意x的父节点和之前的路径也要压缩,因此先递归再赋值。
{
CompressSet(top, city[x].parent); // 继续向上压缩
city[x].parent = top; // 调整父节点为top
}
}
int FindSet(int x) // 找到x的父节点,并且在寻找之前压缩路径
{
if (city[x].parent != x) // 如果x的父节点不是自己,说明这个集合不是单个元素的集合,应该把所有元素指向祖先节点。
{
int top = FindSet(city[x].parent); // 先获取集合的祖先节点
CompressSet(top, x); // 压缩x到祖先路径上的所有结点指向top
}
return city[x].parent; // 如果x的父节点为自己,说明这就是祖先节点。
}
void UnionSet(int x, int y)
{
int a = FindSet(x);
int b = FindSet(y);
city[a].parent = b; // 集合的合并即找到二者的父亲,让其中一个的父亲成为另一个结点,因为这里不涉及到计数,因此不必判断集合大小。
} int main()
{
//input
scanf("%d%d%d", &n, &m, &k);
vector<vector<Edge>> edge;
edge.resize(n);
for (int i = 0; i < m; ++i)
{
int a, b;
scanf("%d%d", &a, &b);
a--; b--;
edge[a].push_back(Edge(b));
edge[b].push_back(Edge(a));
}
//
//query
for (int i = 0; i < k; ++i)
{
int q;
scanf("%d", &q);
q--;
InitSet(); // 每个元素都是祖先
for (int u = 0; u < n; ++u)
{
for (int j = 0; j < edge[u].size(); ++j)
{
int v = edge[u][j].v;
if (u != q&&v != q) UnionSet(u, v); // 把v w结点的集合合并
}
}
// 这时候所有结点都加入了集合,但是注意到还没有压缩路径,因此很多结点的父节点并未成功指向祖先节点。
set<int> parentSet;
for (int j = 0; j < n; ++j){
// 为了保证所有结点指向祖先结点,使用FindSet函数来查找parent,而不能直接获取parent成员变量,一定要注意!
parentSet.insert(FindSet(j)); // 由于没有排除被占领的结点自成一个父节点,故要减去它才是真正的所有未占领结点组成的集合。
}
printf("%d\n", parentSet.size() - 2);
}
return 0;
}
1013. Battle Over Cities (25)的更多相关文章
- PAT 解题报告 1013. Battle Over Cities (25)
1013. Battle Over Cities (25) t is vitally important to have all the cities connected by highways in ...
- PAT 甲级 1013 Battle Over Cities (25 分)(图的遍历,统计强连通分量个数,bfs,一遍就ac啦)
1013 Battle Over Cities (25 分) It is vitally important to have all the cities connected by highway ...
- 1013 Battle Over Cities (25分) DFS | 并查集
1013 Battle Over Cities (25分) It is vitally important to have all the cities connected by highways ...
- PAT A 1013. Battle Over Cities (25)【并查集】
https://www.patest.cn/contests/pat-a-practise/1013 思路:并查集合并 #include<set> #include<map> ...
- 1013 Battle Over Cities (25)(25 point(s))
problem It is vitally important to have all the cities connected by highways in a war. If a city is ...
- 1013. Battle Over Cities (25)(DFS遍历)
For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city ...
- PAT Advanced 1013 Battle Over Cities (25) [图的遍历,统计连通分量的个数,DFS,BFS,并查集]
题目 It is vitally important to have all the cities connected by highways in a war. If a city is occup ...
- 1013 Battle Over Cities (25 分)
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- 1013 Battle Over Cities (25分) 图的连通分量+DFS
题目 It is vitally important to have all the cities connected by highways in a war. If a city is occup ...
随机推荐
- Genymotion配置遇到的坑
1.Genymotion 无法Add下来 解决: ①首先打开Genymotion,的Settings然后找到VirtualBox,复制链接,在本地找到文件夹,然后返回上一层找到ova文件夹进入, ②然 ...
- 漫谈Web缓存架构
计算机领域多处地方用到缓存,比如说为了缓解CPU和内存之间的速度不匹配问题,我们往往通过增加一级.二级.三级缓存,CPU先从缓存中取指令,如果取不到,再从内存中取,并更新缓存,同时,根据程序的局部性原 ...
- java绘图原理------在窗口界面(或面板上)画出一张或多张图片问题解决方法
/** *@author blovedr * 功能: java绘图原理------在窗口界面(或面板上)画出一张或多张图片问题解决方法 * 日期: 2018年4月28日 16:20 * 注释: ...
- leetcode刷题笔记231 2的幂
题目描述: 给定一个整数,写一个函数来判断它是否是2的幂. 题目分析: 判断一个整数是不是2的幂,可根据二进制来分析.2的幂如2,4,8,等有一个特点: 二进制数首位为1,其他位为0,如2为10,4为 ...
- for循环创建文件夹
bash里面, for n in a b c; do mkdir $n/dir; done 这个会在a,b,c三个文件夹下创建一个名为dir的文件夹. 之前没有在语句后面加分号,导致在cmd界面提交不 ...
- Oracle性能优化-读懂执行计划
Oracle的执行计划 得到执行计划的方式 Autotrace例子 使用Explain explain plan set STATEMENT_ID='testplan' for select * fr ...
- 多线程(五) Fork/Join框架介绍及实例讲解
什么是Fork/Join框架 Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 我们再通过For ...
- iOS中的NSURLProtocol
转自:iOS知识小集 NSURLProtocol类(注意,这个不是协议)经常用于实现一些URL Loading System相关的黑魔法.它可以拦截URL Loading System相关的网络请求, ...
- 【Unity Shader】新书封面 — Low Polygon风格的渲染
写在前面 最近又开心又担心,因为我的书马上就要上市了,开心当然是因为等了这么久终于可以如愿了,担心是因为不少人对它的期待都很大,我第一次写书,能力也有限,不知道能不能让大家满意,让大家也都喜欢上它.不 ...
- windows 消除文件名中的快捷方式
1)运行regedit进入注册表.2)依次打开:HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer3)右侧框图,把 ...