"""Simple tutorial for using TensorFlow to compute a linear regression.

Parag K. Mital, Jan. 2016"""
# %% imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

# %% Let's create some toy data
plt.ion()  #enable interactive mode
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()

# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

# %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
# The `Variable()` constructor requires an initial value for the variable,
# which can be a `Tensor` of any type and shape. The initial value defines the
# type and shape of the variable. After construction, the type and shape of
# the variable are fixed. The value can be changed using one of the assign
# methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)

# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)

# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))

# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
    # Here we tell tensorflow that we want to initialize all
    # the variables in the graph so we can use them
    sess.run(tf.initialize_all_variables())

    # Fit all training data
    prev_training_cost = 0.0
    for epoch_i in range(n_epochs):
        for (x, y) in zip(xs, ys):
            sess.run(optimizer, feed_dict={X: x, Y: y})

        training_cost = sess.run(
            cost, feed_dict={X: xs, Y: ys})
        print(training_cost)

        if epoch_i % 20 == 0:
            ax.plot(xs, Y_pred.eval(
                feed_dict={X: xs}, session=sess),
                    'k', alpha=epoch_i / n_epochs)
            fig.show()
            plt.draw()

        # Allow the training to quit if we've reached a minimum
        if np.abs(prev_training_cost - training_cost) < 0.000001:
            break
        prev_training_cost = training_cost
fig.show()
plt.waitforbuttonpress()

Simple tutorial for using TensorFlow to compute a linear regression的更多相关文章

  1. Simple tutorial for using TensorFlow to compute polynomial regression

    """Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mi ...

  2. 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression

    1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...

  3. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  4. STA 463 Simple Linear Regression Report

    STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...

  5. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  6. 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用

    TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...

  7. Tensorflow - Implement for a Softmax Regression Model on MNIST.

    Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mn ...

  8. TensorFlow笔记二:线性回归预测(Linear Regression)

    代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...

  9. 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization

    1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它 ...

随机推荐

  1. poj1741Tree 点分治

    上午学习了点分治,写了1个半小时终于写出一个代码--poj1741,可以说是个模板题. 分治:对于每个儿子找出重心,分别处理 注意:1.每次处理一个重心后,ans减去对它儿子的处理 原因:因为统计方法 ...

  2. Python Django的分页,Form验证,中间件

    本节内容 Django的分页 Form 中间件 1 Django 分页 1.1 Django自带的分页 1.首先来看下我的测试数据环境 ############ models.py ######### ...

  3. Python 中的 if __name__ == '__main__' 该如何理解

    __name__ 表示当前模块名, __main__ 表示正在运行的模块名. if __name__ == '__main__' 这句话的意思就是,当模块被直接运行时,以下代码块将被运行,当模块是被导 ...

  4. 华科机考:N阶楼梯上楼

    时间限制:1秒空间限制:32768K 题目描述 N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入描述: 输入包括一个整数N,(1<=N<90). 输出描 ...

  5. 项目管理软件系列-Linux一键安装禅道

    linux用一键安装包 简介:本文介绍如何在linux下面使用禅道一键安装包搭建禅道的运行环境. linux一键安装包内置了apache, php, mysql这些应用程序,只需要下载解压缩即可运行禅 ...

  6. 数据库4m10d作业

    Create table student ( Sno char(15) primary key , Sname varchar(10) not null, Sage tinyint , Special ...

  7. C#利用Attribute实现简易AOP介绍

    首先看一段简单的代码: public partial class Form1 : Form { public Form1() { InitializeComponent(); } //来自UI层的调用 ...

  8. Python中切片的工作原理

    切片时的索引是在两个字符之间.左边第一个字符的索引为 0,而长度为 n 的字符串其最后一个字符的右界索引为n. 例如: +---+---+---+---+---+---+ | P | y | t | ...

  9. ES6(数据结构_2)

    数据结构—2 Map 与 Array 的对比 Set 与 Array的对比 Map 与 Object 的对比 Set 与 Object 的对比 (增.查.改.删) 一.Map 与 Array 的对比 ...

  10. Spring + mybatis 集成

    具体项目可参照:https://github.com/LuoXiaoyi/springmvc 一.环境准备:Spring4.3.5 + Mybatis3.4.6 + Mybatis-Spring 1. ...