"""Simple tutorial for using TensorFlow to compute a linear regression.

Parag K. Mital, Jan. 2016"""
# %% imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

# %% Let's create some toy data
plt.ion()  #enable interactive mode
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()

# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

# %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
# The `Variable()` constructor requires an initial value for the variable,
# which can be a `Tensor` of any type and shape. The initial value defines the
# type and shape of the variable. After construction, the type and shape of
# the variable are fixed. The value can be changed using one of the assign
# methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)

# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)

# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))

# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
    # Here we tell tensorflow that we want to initialize all
    # the variables in the graph so we can use them
    sess.run(tf.initialize_all_variables())

    # Fit all training data
    prev_training_cost = 0.0
    for epoch_i in range(n_epochs):
        for (x, y) in zip(xs, ys):
            sess.run(optimizer, feed_dict={X: x, Y: y})

        training_cost = sess.run(
            cost, feed_dict={X: xs, Y: ys})
        print(training_cost)

        if epoch_i % 20 == 0:
            ax.plot(xs, Y_pred.eval(
                feed_dict={X: xs}, session=sess),
                    'k', alpha=epoch_i / n_epochs)
            fig.show()
            plt.draw()

        # Allow the training to quit if we've reached a minimum
        if np.abs(prev_training_cost - training_cost) < 0.000001:
            break
        prev_training_cost = training_cost
fig.show()
plt.waitforbuttonpress()

Simple tutorial for using TensorFlow to compute a linear regression的更多相关文章

  1. Simple tutorial for using TensorFlow to compute polynomial regression

    """Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mi ...

  2. 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression

    1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...

  3. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  4. STA 463 Simple Linear Regression Report

    STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...

  5. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  6. 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用

    TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...

  7. Tensorflow - Implement for a Softmax Regression Model on MNIST.

    Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mn ...

  8. TensorFlow笔记二:线性回归预测(Linear Regression)

    代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...

  9. 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization

    1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它 ...

随机推荐

  1. Python Web学习笔记之多道程序设计技术和操作系统的特性

    采用了多道程序设计技术的操作系统具有如下特性 : ① 并发性.它 是指两个或两个以上的事件或活动在同一时间间隔内发生.操作系统是一个并发系统,并发性是它的重要特征,操作系统的并发性指计算机系统中同时存 ...

  2. java集合之HashMap源码解读

    源自:jdk1.8.0_121 HashMap继承自AbstractMap,实现了Map.Cloneable.Serializable. HashMap内部是由数组.链表.红黑树实现的 变量 // 默 ...

  3. Just for mysql

    mysql的下载与安装 由于学校开设了数据库专业,并且最近准备在做一个web端的设计,虽然本人是负责前端(当然,前端技术也很LOW),但因种种原因,准备开始学习数据库相关的知识,以mysql为例. 昨 ...

  4. angular2+ionic2架构介绍

    不要用angular的语法去写angular2,有人说二者就像Java和JavaScript的区别.   1. 项目所用:angular2+ionic2+typescript 2. 项目结构 3. S ...

  5. Vue实践经验

    多考虑应变 如果模版中绑定了 obj.xx 时,需要注意 obj 是否是异步数据,默认值是否为 null.安全起见,可在组件最外层加 v-if 判断. <template> <div ...

  6. Memcached在Linux环境下的使用详解

    一.引言             写有关NoSQL数据库有关的文章已经有一段时间了,可以高兴的说,Redis暂时就算写完了,从安装到数据类型,在到集群,几乎都写到了.如果以后有了心得,再补充吧.然后就 ...

  7. c++ Struct和Class的区别

    C++中的struct对C中的struct进行了扩充,它已经不再只是一个包含不同数据类型的数据结构了,它已经获取了太多的功能.struct能包含成员函数吗? 能!struct能继承吗? 能!!stru ...

  8. os和sys模块的区别及其常用方法总结

    官方解释:os: This module provides a portable way of using operating system dependent functionality. 翻译:提 ...

  9. python序列化pickle/cPickle

    一.pickle/Cpickle简介 Python序列化的概念很简单.内存里面有一个数据结构,你希望将它保存下来,重用,或者发送给其他人.你会怎么做?这取决于你想要怎么保存,怎么重用,发送给谁.很多游 ...

  10. .NET Core 网络数据采集 -- 使用AngleSharp做html解析

    有这么一本Python的书: <<Python 网络数据采集>> 我准备用.NET Core及第三方库实现里面所有的例子. 这是第一部分, 主要使用的是AngleSharp:  ...