Simple tutorial for using TensorFlow to compute a linear regression
"""Simple tutorial for using TensorFlow to compute a linear regression. Parag K. Mital, Jan. 2016""" # %% imports import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # %% Let's create some toy data plt.ion() #enable interactive mode n_observations = 100 fig, ax = plt.subplots(1, 1) xs = np.linspace(-3, 3, n_observations) ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations) ax.scatter(xs, ys) fig.show() plt.draw() # %% tf.placeholders for the input and output of the network. Placeholders are # variables which we need to fill in when we are ready to compute the graph. X = tf.placeholder(tf.float32) Y = tf.placeholder(tf.float32) # %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2 # The `Variable()` constructor requires an initial value for the variable, # which can be a `Tensor` of any type and shape. The initial value defines the # type and shape of the variable. After construction, the type and shape of # the variable are fixed. The value can be changed using one of the assign # methods. W = tf.Variable(tf.random_normal([1]), name='weight') b = tf.Variable(tf.random_normal([1]), name='bias') Y_pred = tf.add(tf.mul(X, W), b) # %% Loss function will measure the distance between our observations # and predictions and average over them. cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1) # %% if we wanted to add regularization, we could add other terms to the cost, # e.g. ridge regression has a parameter controlling the amount of shrinkage # over the norm of activations. the larger the shrinkage, the more robust # to collinearity. # cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W]))) # %% Use gradient descent to optimize W,b # Performs a single step in the negative gradient learning_rate = 0.01 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # %% We create a session to use the graph n_epochs = 1000 with tf.Session() as sess: # Here we tell tensorflow that we want to initialize all # the variables in the graph so we can use them sess.run(tf.initialize_all_variables()) # Fit all training data prev_training_cost = 0.0 for epoch_i in range(n_epochs): for (x, y) in zip(xs, ys): sess.run(optimizer, feed_dict={X: x, Y: y}) training_cost = sess.run( cost, feed_dict={X: xs, Y: ys}) print(training_cost) if epoch_i % 20 == 0: ax.plot(xs, Y_pred.eval( feed_dict={X: xs}, session=sess), 'k', alpha=epoch_i / n_epochs) fig.show() plt.draw() # Allow the training to quit if we've reached a minimum if np.abs(prev_training_cost - training_cost) < 0.000001: break prev_training_cost = training_cost fig.show() plt.waitforbuttonpress()
Simple tutorial for using TensorFlow to compute a linear regression的更多相关文章
- Simple tutorial for using TensorFlow to compute polynomial regression
"""Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mi ...
- 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression
1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...
- Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...
- STA 463 Simple Linear Regression Report
STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...
- Tensorflow - Implement for a Softmax Regression Model on MNIST.
Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mn ...
- TensorFlow笔记二:线性回归预测(Linear Regression)
代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...
- 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization
1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它 ...
随机推荐
- poj1741Tree 点分治
上午学习了点分治,写了1个半小时终于写出一个代码--poj1741,可以说是个模板题. 分治:对于每个儿子找出重心,分别处理 注意:1.每次处理一个重心后,ans减去对它儿子的处理 原因:因为统计方法 ...
- Python Django的分页,Form验证,中间件
本节内容 Django的分页 Form 中间件 1 Django 分页 1.1 Django自带的分页 1.首先来看下我的测试数据环境 ############ models.py ######### ...
- Python 中的 if __name__ == '__main__' 该如何理解
__name__ 表示当前模块名, __main__ 表示正在运行的模块名. if __name__ == '__main__' 这句话的意思就是,当模块被直接运行时,以下代码块将被运行,当模块是被导 ...
- 华科机考:N阶楼梯上楼
时间限制:1秒空间限制:32768K 题目描述 N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入描述: 输入包括一个整数N,(1<=N<90). 输出描 ...
- 项目管理软件系列-Linux一键安装禅道
linux用一键安装包 简介:本文介绍如何在linux下面使用禅道一键安装包搭建禅道的运行环境. linux一键安装包内置了apache, php, mysql这些应用程序,只需要下载解压缩即可运行禅 ...
- 数据库4m10d作业
Create table student ( Sno char(15) primary key , Sname varchar(10) not null, Sage tinyint , Special ...
- C#利用Attribute实现简易AOP介绍
首先看一段简单的代码: public partial class Form1 : Form { public Form1() { InitializeComponent(); } //来自UI层的调用 ...
- Python中切片的工作原理
切片时的索引是在两个字符之间.左边第一个字符的索引为 0,而长度为 n 的字符串其最后一个字符的右界索引为n. 例如: +---+---+---+---+---+---+ | P | y | t | ...
- ES6(数据结构_2)
数据结构—2 Map 与 Array 的对比 Set 与 Array的对比 Map 与 Object 的对比 Set 与 Object 的对比 (增.查.改.删) 一.Map 与 Array 的对比 ...
- Spring + mybatis 集成
具体项目可参照:https://github.com/LuoXiaoyi/springmvc 一.环境准备:Spring4.3.5 + Mybatis3.4.6 + Mybatis-Spring 1. ...