Simple tutorial for using TensorFlow to compute a linear regression
"""Simple tutorial for using TensorFlow to compute a linear regression.
Parag K. Mital, Jan. 2016"""
# %% imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# %% Let's create some toy data
plt.ion() #enable interactive mode
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()
# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
# %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
# The `Variable()` constructor requires an initial value for the variable,
# which can be a `Tensor` of any type and shape. The initial value defines the
# type and shape of the variable. After construction, the type and shape of
# the variable are fixed. The value can be changed using one of the assign
# methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)
# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)
# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))
# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
# Here we tell tensorflow that we want to initialize all
# the variables in the graph so we can use them
sess.run(tf.initialize_all_variables())
# Fit all training data
prev_training_cost = 0.0
for epoch_i in range(n_epochs):
for (x, y) in zip(xs, ys):
sess.run(optimizer, feed_dict={X: x, Y: y})
training_cost = sess.run(
cost, feed_dict={X: xs, Y: ys})
print(training_cost)
if epoch_i % 20 == 0:
ax.plot(xs, Y_pred.eval(
feed_dict={X: xs}, session=sess),
'k', alpha=epoch_i / n_epochs)
fig.show()
plt.draw()
# Allow the training to quit if we've reached a minimum
if np.abs(prev_training_cost - training_cost) < 0.000001:
break
prev_training_cost = training_cost
fig.show()
plt.waitforbuttonpress()
Simple tutorial for using TensorFlow to compute a linear regression的更多相关文章
- Simple tutorial for using TensorFlow to compute polynomial regression
"""Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mi ...
- 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression
1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...
- Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...
- STA 463 Simple Linear Regression Report
STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...
- Tensorflow - Implement for a Softmax Regression Model on MNIST.
Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mn ...
- TensorFlow笔记二:线性回归预测(Linear Regression)
代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...
- 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization
1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它 ...
随机推荐
- dva-quickstart 与 create-react-app 比较(一)
最近在学习 React , 现对 dva-quickstart 与 create-react-app 比较 1. 安装, 两个都需要安装工具包:npm install -g create-re ...
- 手写JAVA虚拟机(二)——实现java命令行
查看手写JAVA虚拟机系列可以进我的博客园主页查看. 我们知道,我们编译.java并运行.class文件时,需要一些java命令,如最简单的helloworld程序. 这里的程序最好不要加包名,因为加 ...
- js ==与===区别
//全等===和相等==的区别 console.log(100 === '100');//false console.log(100 == '100');//true 1.对于string,numbe ...
- spring @Value 设置默认值
@Value("${spring.value.test}") private String value; 如果配置文件中没有设置 spring.value.test 在启动的时候讲 ...
- jupyter notebook 更换主题的方法
参考 https://github.com/dunovank/jupyter-themes install with pip # install jupyterthemes pip install j ...
- 2. struct A 和 typedef struct A
2. struct A 和 typedef struct A 2.1 struct A struct A{}定义一个名为struct A的结构体. 下例定义了struct A同时,声明了两个变量(注意 ...
- vue-cli中配置sass
第一步, npm install node-sass --save-dev npm install sass-loader --save-dev 第二部,打开webpack.base.config.j ...
- API说明书规范
目录 1 前言 1.1 编写目的 1.2 预期读者 1.3 关于API设计开发 2 API公共说明 3 文档API索引 ...
- hive 存储,解析,处理json数据
hive 处理json数据总体来说有两个方向的路走 1.将json以字符串的方式整个入Hive表,然后通过使用UDF函数解析已经导入到hive中的数据,比如使用LATERAL VIEW json_tu ...
- IP地址段遍历
#region 搜索ftp服务器地址 /// <summary> /// 搜索ftp服务器 /// </summary> public void SearchFtpServer ...