Simple tutorial for using TensorFlow to compute a linear regression
"""Simple tutorial for using TensorFlow to compute a linear regression.
Parag K. Mital, Jan. 2016"""
# %% imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
# %% Let's create some toy data
plt.ion() #enable interactive mode
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()
# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
# %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
# The `Variable()` constructor requires an initial value for the variable,
# which can be a `Tensor` of any type and shape. The initial value defines the
# type and shape of the variable. After construction, the type and shape of
# the variable are fixed. The value can be changed using one of the assign
# methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)
# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)
# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))
# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
# Here we tell tensorflow that we want to initialize all
# the variables in the graph so we can use them
sess.run(tf.initialize_all_variables())
# Fit all training data
prev_training_cost = 0.0
for epoch_i in range(n_epochs):
for (x, y) in zip(xs, ys):
sess.run(optimizer, feed_dict={X: x, Y: y})
training_cost = sess.run(
cost, feed_dict={X: xs, Y: ys})
print(training_cost)
if epoch_i % 20 == 0:
ax.plot(xs, Y_pred.eval(
feed_dict={X: xs}, session=sess),
'k', alpha=epoch_i / n_epochs)
fig.show()
plt.draw()
# Allow the training to quit if we've reached a minimum
if np.abs(prev_training_cost - training_cost) < 0.000001:
break
prev_training_cost = training_cost
fig.show()
plt.waitforbuttonpress()
Simple tutorial for using TensorFlow to compute a linear regression的更多相关文章
- Simple tutorial for using TensorFlow to compute polynomial regression
"""Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mi ...
- 深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression
1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Conv ...
- Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...
- STA 463 Simple Linear Regression Report
STA 463 Simple Linear Regression ReportSpring 2019 The goal of this part of the project is to perfor ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
- 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...
- Tensorflow - Implement for a Softmax Regression Model on MNIST.
Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mn ...
- TensorFlow笔记二:线性回归预测(Linear Regression)
代码: import tensorflow as tf import numpy as np import xlrd import matplotlib.pyplot as plt DATA_FILE ...
- 深度学习 Deep Learning UFLDL 最新Tutorial 学习笔记 3:Vectorization
1 Vectorization 简述 Vectorization 翻译过来就是向量化,各简单的理解就是实现矩阵计算. 为什么MATLAB叫MATLAB?大概就是Matrix Lab,最根本的差别于其它 ...
随机推荐
- [bzoj3668][Noi2014]起床困难综合症/[洛谷3613]睡觉困难综合症
来自FallDream的博客,未经允许,请勿转载,谢谢. 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综 ...
- java 实现WebService
1.xml 2. wsdl: webservice description language web服务描述语言 通过xml格式说明调用的地址方法如何调用,可以看错webse ...
- C# 解决winform 窗体控件在窗体变化时闪烁的问题
在窗体form代码中加入如下代码即可: protected override CreateParams CreateParams { get { CreateParams cp = base.Crea ...
- python 字典实现简单购物车
# -*- coding: utf-8 -*-#总金额asset_all=0i1=input('请输入总资产:')asset_all=int(i1)#商品列表goods=[ {'name':'电脑', ...
- 浏览器控制台调试json数据
var str ='{"code":0,"message":"","systemTime":"2017-10- ...
- ajax中基本参数应用
$(function () { $("#verificationCodeBtn").click(function () { $("#verificationCodeIma ...
- c++指针函数的使用——回调函数
/* 函数指针 函数也是有地址的 所谓函数指针,就是指向函数的指针,函数指针也是一个变量,可以指向不同的函数.同时通过函数指针可以调用其指向函数,从而使函数的调用更加灵活. 函数指针的用途 */ #i ...
- PHP 常用函数集合
PHP is_numeric() 函数 由 陈 创建, 最后一次修改 2016-12-02 定义和用法 is_numeric() - 检测变量是否为数字或数字字符串 语法 bool is_numeri ...
- 一些重要的计算机网络协议(IP、TCP、UDP、HTTP)
一.计算机网络的发展历程 1.计算机网络发展 与其说计算机改变了世界,倒不如说是计算机网络改变了世界.彼时彼刻,你我都因网络而有了交集,岂非一种缘分? 计算机与网络发展大致经历如下过程:
- 关于go语言的通道
1.记一次gorountine导致的泄漏 在项目中使用https://github.com/deckarep/golang-set这个三方包造成了gorountine泄漏.先来看一下这个包的迭代器设置 ...