时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

Given a sequence {an}, how many non-empty sub-sequence of it is a prefix of fibonacci sequence.

A sub-sequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.

The fibonacci sequence is defined as below:

F1 = 1, F2 = 1

Fn = Fn-1 + Fn-2, n>=3

输入

One line with an integer n.

Second line with n integers, indicating the sequence {an}.

For 30% of the data, n<=10.

For 60% of the data, n<=1000.

For 100% of the data, n<=1000000, 0<=ai<=100000.

输出

One line with an integer, indicating the answer modulo 1,000,000,007.

样例提示

The 7 sub-sequences are:

{a2}

{a3}

{a2, a3}

{a2, a3, a4}

{a2, a3, a5}

{a2, a3, a4, a6}

{a2, a3, a5, a6}

样例输入
6
2 1 1 2 2 3
样例输出
7

// Java版本
import java.awt.im.InputContext;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Scanner; public class Main {
/* 2
0 0
0 3 1.000 1.000 5.000 */
static HashSet<Integer> fibSet=new HashSet<Integer>();
static HashMap<Integer, Integer> fibMap=new HashMap<Integer, Integer>();
static HashMap<Integer, Integer> fibMap2=new HashMap<Integer, Integer>();
public static void fib(){
fibMap.put(1, (int) 1);
fibMap.put(2, (int) 1);
fibSet.add((int) 1);
fibMap2.put((int) 1, 1);
for(int i=3; i<50; i++){ fibMap.put(i, fibMap.get(i-1)+fibMap.get(i-2));
fibMap2.put(fibMap.get(i-1)+fibMap.get(i-2), i);
fibSet.add(fibMap.get(i-1)+fibMap.get(i-2));
}
//System.out.println("fibmap"); }
//如果有a之前的所有
public static boolean hasPre(int a, HashMap<Integer, Integer> nums){
int k=fibMap2.get(a); boolean result=true;
for(int i=k-1;i>2; i--){ if(nums.get(fibMap.get(i)) !=null &&nums.get(fibMap.get(i)) >0){
continue;
}else{
result=false;
break;
}
} if(result&& nums.get(1)!=null &&nums.get(1)>1 ){
result= true;
}else{
result= false;
} return result; } public static int precount(int a, HashMap<Integer, Integer> nums){
long count=1;
int k=fibMap2.get(a); for(int i=k-1;i>2; i--){
count=count*nums.get(fibMap.get(i)); }
count*=(nums.get(1)*(nums.get(1)-1)/2);
return (int) (count%1000000007); }
public static void main(String[] args) { Scanner scanner = new Scanner(System.in);
int n=scanner.nextInt();
int a[] = new int[n];
for(int i=0; i<n; i++){
a[i]=scanner.nextInt(); }
fib();
//fib计数
HashMap<Integer, Integer> nums=new HashMap<Integer, Integer>();
boolean has1=false;
long count=0;
for(int i=0; i<n; ++i){
//如果等于1,那就好弄
//System.out.println(a[i]+""+fibSet.contains((long)a[i]) );
if(a[i]==1){
if(nums.containsKey(1)){
count=count+nums.get(1)+1;
nums.put(1, nums.get(1)+1); }else{
nums.put(1, 1);
count+=1;
}
has1=true; }else if(has1&& nums.get(1)>1&& fibSet.contains(a[i]) && hasPre(a[i],nums)){ count=(count+precount(a[i],nums))%1000000007;
if(nums.containsKey(a[i])){
nums.put(a[i], nums.get(a[i])+1);
}else{
nums.put(a[i], 1);
} }
//System.out.println(nums);
} System.out.println(count);
scanner.close();
} }

题目3 : Fibonacci的更多相关文章

  1. 山东省第七届ACM省赛------Fibonacci

    Fibonacci Time Limit: 2000MS Memory limit: 131072K 题目描述 Fibonacci numbers are well-known as follow: ...

  2. HPU--1221 Fibonacci数列

    题目描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少. 输入 输入包含一个整数n. ...

  3. 网易编程题——Fibonacci数列

    题目描述 Fibonacci数列是这样定义的: F[0] = 0 F[1] = 1 for each i ≥ 2: F[i] = F[i-1] + F[i-2] 因此,Fibonacci数列就形如:0 ...

  4. 1221: Fibonacci数列 [数学]

    1221: Fibonacci数列 [数学] 时间限制: 1 Sec 内存限制: 128 MB 提交: 116 解决: 36 统计 题目描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn- ...

  5. 2017网易---Fibonacci数列

    题目描述 Fibonacci数列是这样定义的:F[0] = 0F[1] = 1for each i ≥ 2: F[i] = F[i-1] + F[i-2]因此,Fibonacci数列就形如:0, 1, ...

  6. hdu4099 Revenge of Fibonacci

    题意:给定fibonacci数列,输入前缀,求出下标.题目中fibonacci数量达到100000,而题目输入的前缀顶多为40位数字,这说明我们只需要精确计算fibinacci数前40位即可.查询时使 ...

  7. Fibonacci数列(找规律)

    题目描述 Fibonacci数列是这样定义的:F[0] = 0F[1] = 1for each i ≥ 2: F[i] = F[i-1] + F[i-2]因此,Fibonacci数列就形如:0, 1, ...

  8. 算法设计与分析 1.2 不一样的fibonacci数列

    ★题目描述 fibonacci 数列的递推公式是F(n) = F(n-1) + F(n-2)(n >= 2 且 n 为整数). 将这个递推式改为F(n) = aF(n-1) + bF(n-2)( ...

  9. [HDU3117]Fibonacci Numbers

    题目:Fibonacci Numbers 链接:http://acm.hdu.edu.cn/showproblem.php?pid=3117 分析: 1)后四位可以用矩阵快速幂解决.$T= \left ...

随机推荐

  1. Ext分区文件恢复工具extundelete

     Ext分区文件恢复工具extundelete Ext是延伸文件系统(Extended system)的缩写.它是为Linux内核开发的第一个文件系统.它有多个版本.现在常见的是Ext3和Ext4.由 ...

  2. 【bzoj4720】【noip2016】【换座位】期望dp+Floyd

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=62370736 wa...已经快一年了,重新来做这 ...

  3. 基于Bootstrap的表格插件bootstrap-table

    写在前面: 表格在项目中是使用比较多的,bootstrap-table插件也是非常好用,而且表格页面也比较好看.这里也简单的记录下. 下面直接看demo吧,代码中都注释了,有些用法,这里没有用到,需要 ...

  4. 图论常用算法之一 POJ图论题集【转载】

    POJ图论分类[转] 一个很不错的图论分类,非常感谢原版的作者!!!在这里分享给大家,爱好图论的ACMer不寂寞了... (很抱歉没有找到此题集整理的原创作者,感谢知情的朋友给个原创链接) POJ:h ...

  5. 解析HTML文件 - 运用SgmlReader类来解析HTML文件

    运用.NET Framework类来解析HTML文件.读取数据并不是最容易的.虽然你可以用.NET Framework中的许多类(如StreamReader)来逐行解析文件,但XmlReader提供的 ...

  6. java实现随机中文

    原文:http://blog.csdn.net/u013926110/article/details/44600601 public class CreateCheckCode { /** * 生成随 ...

  7. Overview of iOS Crash Reporting Tools: Part 1/2

    Believe it or not, developers are not perfect, and every once in a while you might have a (gasp!) bu ...

  8. hdu1008(c++)

    分清上升停留下降一步步来就是了 #include<iostream>#include<vector>using namespace std;int main(){ int N, ...

  9. 用ASP实现JS的decodeURIComponent()函数

    <% response.write jsDecodeURIComponent( "%E6%B5%8B%E8%AF%95" ) %> <script languag ...

  10. 安全小测试:介绍一个简单web安全知识测试的网站

    https://websecurity.firebaseapp.com/ 一次测试一共7道题,最后有答案,可以反复做,每次随机抽题