Mahmoud was trying to solve the vertex cover problem on trees. The problem statement is:

Given an undirected tree consisting of n nodes, find the minimum number of vertices that cover all the edges. Formally, we need to find a set of vertices such that for each edge (u, v) that belongs to the tree, either u is in the set, or v is in the set, or both are in the set. Mahmoud has found the following algorithm:

  • Root the tree at node 1.
  • Count the number of nodes at an even depth. Let it be evenCnt.
  • Count the number of nodes at an odd depth. Let it be oddCnt.
  • The answer is the minimum between evenCnt and oddCnt.

The depth of a node in a tree is the number of edges in the shortest path between this node and the root. The depth of the root is 0.

Ehab told Mahmoud that this algorithm is wrong, but he didn't believe because he had tested his algorithm against many trees and it worked, so Ehab asked you to find 2 trees consisting of n nodes. The algorithm should find an incorrect answer for the first tree and a correct answer for the second one.

Input

The only line contains an integer n (2 ≤ n ≤ 105), the number of nodes in the desired trees.

Output

The output should consist of 2 independent sections, each containing a tree. The algorithm should find an incorrect answer for the tree in the first section and a correct answer for the tree in the second. If a tree doesn't exist for some section, output "-1" (without quotes) for that section only.

If the answer for a section exists, it should contain n - 1 lines, each containing 2 space-separated integers u and v (1 ≤ u, v ≤ n), which means that there's an undirected edge between node u and node v. If the given graph isn't a tree or it doesn't follow the format, you'll receive wrong answer verdict.

If there are multiple answers, you can print any of them.

Examples
Input

Copy
2
Output

Copy
-1
1 2
Input

Copy
8
Output

Copy
1 2
1 3
2 4
2 5
3 6
4 7
4 8
1 2
1 3
2 4
2 5
2 6
3 7
6 8
Note

In the first sample, there is only 1 tree with 2 nodes (node 1 connected to node 2). The algorithm will produce a correct answer in it so we printed  - 1 in the first section, but notice that we printed this tree in the second section.

In the second sample:

In the first tree, the algorithm will find an answer with 4 nodes, while there exists an answer with 3 nodes like this: In the second tree, the algorithm will find an answer with 3 nodes which is correct:

题意:

输入一个n,代表一棵n个节点的树。有个同学提出了个猜想,他想通过删除点(删除一个点就是同时删除和它相连的所有边)来删除完所有边,他认为x=min(这棵树的奇深度的所有点的个数,这棵树的偶深度的所有点的个数),这个x就是可以删除所有边的最小的要切除的点的个数。要输出一个反例的树,然后再输出一个符合的树

思路:

可以发现1~5时,均符合结论;

当 n>=6时,我们可以这样构造:

树的深度总共就3层,而偶数层为2,奇数层为1,3。我们这样构造:

1----->3,1----->2,1------>4;

3----->5...n ;这样实际上最少操作次数为2,而该结论为3;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 400005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n; int main()
{
//ios::sync_with_stdio(0);
rdint(n);
if (n == 1 || n == 2 || n == 3 || n == 4 || n == 5)cout << -1 << endl;
else {
cout << "1 3" << endl; cout << "1 2" << endl; cout << "1 4" << endl;
for (int i = 5; i <= n; i++) {
cout << 3 << ' ' << i << endl;
}
}
for (int i = 1; i < n; i++)cout << i << ' ' << i + 1 << endl;
return 0;
}

CF959C Mahmoud and Ehab and the wrong algorithm 构造的更多相关文章

  1. [CF959C]Mahmoud and Ehab and the wrong algorithm

    解法 很简单对于n<=5举不出反例 如果n>5的话2,3,4好点连1,其他点连2 对于正面例子 直接所有点连1号点 其实就是结论题 代码: #include <cstdio> ...

  2. CodeForces - 862C Mahmoud and Ehab and the xor(构造)

    题意:要求构造一个n个数的序列,要求n个数互不相同,且异或结果为x. 分析: 1.因为0 ^ 1 ^ 2 ^ 3 ^ ... ^ (n - 3) ^ (n - 2) ^ (0 ^ 1 ^ 2 ^ 3 ...

  3. codeforces 862 C. Mahmoud and Ehab and the xor(构造)

    题目链接:http://codeforces.com/contest/862/problem/C 题解:一道简单的构造题,一般构造题差不多都考自己脑补,脑洞一开就过了 由于数据x只有1e5,但是要求是 ...

  4. 862C - Mahmoud and Ehab and the xor(构造)

    原题链接:http://codeforces.com/contest/862/problem/C 题意:给出n,x,求n个不同的数,使这些数的异或和为x 思路:(官方题解)只有n==2&&am ...

  5. CF 959 E. Mahmoud and Ehab and the xor-MST

    E. Mahmoud and Ehab and the xor-MST https://codeforces.com/contest/959/problem/E 分析: 每个点x应该和x ^ lowb ...

  6. CF 862A Mahmoud and Ehab and the MEX【数组操作】

    A. Mahmoud and Ehab and the MEX time limit per test 2 seconds memory limit per test 256 megabytes in ...

  7. CF862B Mahmoud and Ehab and the bipartiteness 二分图染色判定

    \(\color{#0066ff}{题目描述}\) 给出n个点,n-1条边,求再最多再添加多少边使得二分图的性质成立 \(\color{#0066ff}{输入格式}\) The first line ...

  8. codeforces-473D Mahmoud and Ehab and another array construction task (素数筛法+贪心)

    题目传送门 题目大意:先提供一个数组,让你造一个数组,这个数组的要求是 1 各元素之间都互质  2  字典序大于等于原数组  3 每一个元素都大于2 思路: 1.两个数互质的意思就是没有公因子.所以每 ...

  9. Coderfroces 862 C. Mahmoud and Ehab and the xor

    C. Mahmoud and Ehab and the xor Mahmoud and Ehab are on the third stage of their adventures now. As ...

随机推荐

  1. 需要network lightweight filter disk 上的文件netft.sys

    小米wifi在win10下安装不成功,需要network lightweight filter disk 上的文件ntflt.sys 默认路径有问题,改成下面的路径好了! 选择下面第一个路径安装成功了 ...

  2. ffmpeg添加水印的方法举例 (砖)

    网上大部分关于ffmpeg加视频水印的方法还是使用vhook,在现在的ffmpeg中已经不推荐使用,但是也能编译,也能使用,至于效果,一会再说.现在的ffmpeg推荐使用的是libavfilter,但 ...

  3. mybaits中date类型显示时分秒(orcle数据库)

    <insert id="insert" parameterType="daSysLoginLog"> insert into DA_SYS_LOGI ...

  4. python之简单的函数介绍(http://docs.python.org/3/library)

    Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用. 在上面的网站上我们可以进行查询,Python具体都有哪些函数. 我们也可以再交互命令行中来查找函数: >> ...

  5. latex如何进行多行注释

    单行注释:当LATEX 处理一个源文件时,如果遇到一个百分号%,LATEX 将忽略% 后的该行内容,换11行符以及下一行前的空白字符.多行注释:\begin{comment}rather stupid ...

  6. sql server导入excel等数据

    1.首先打开并登陆sql server数据库 2.选择要将表导入的数据库,右击选择任务-->导入数据 3.在弹出的窗口中选择下一步 4.在弹出的窗口中选择数据源,也就是从哪种文件导入,sql s ...

  7. 设置MySQL允许外网访问(转)

    设置MySQL允许外网访问   1.修改配置文件sudo vim /etc/mysql/my.cnf把bind-address参数的值改成你的内/外网IP或0.0.0.0,或者直接注释掉这行. 2.登 ...

  8. 高并发压力测试工具Locust(蝗虫)

    What is Locust? Locust is an easy-to-use, distributed, user load testing tool. It is intended for lo ...

  9. 使用jar打war包或解压war包

    进入Dos命令行,并到目标文件夹,如C:\Temp,待打包的内容在C:\Temp\Blog里,目标,把Blog里的相应文件打成war报 1.打包 C:\Temp\jar -cvf Blog.war . ...

  10. 机器人自主移动的秘密,从SLAM技术说起(一)

    博客转载自:https://www.leiphone.com/news/201609/c35bn1M9kgVaCCef.html 雷锋网(公众号:雷锋网)按:本文作者SLAMTEC(思岚科技公号sla ...