牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学

这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你一共有几种填法。
变形一下就会发现其实是走非交叉格子路径计数,限制条件下的非降路径问题。就是从左上到右下走格子路径。从上到下为0——n,从左到右为0——m。

考虑 01 和 12 的分界线,是 (n, 0) 到 (0, m) 的两条不相交(可重合)路径,因为起点重合了,所以把其中一条路径往左上平移了一格,平移其中一条变成 (n-1, -1) 到 (-1, m-1) 变成起点 (n, 0) 和 (n-1, -1),终点 (0, m) 和 (-1, m-1) 的严格不相交路径。可以想一下,分界线将格子图分成三部分,从左上到右下依次为0,1,2。(不好意思,史诗灾难级灵魂脱壳画手。。。)

叉姐说套Lindström–Gessel–Viennot引理:


就可以得到公式: (Cn+m, n) 2 - Cn+m, m - 1 *Cn+m, n-1。
通过组合数求解的模板,就可以了。
关于Lindström–Gessel–Viennot引理,具体的不清楚,有兴趣的自己去看吧。
和本题有关的传送门:
2.非降路径问题
4.Lindström–Gessel–Viennot lemma 应用两则
5.Lindström–Gessel–Viennot lemma
两份代码:一份自己的垃圾代码,一份叉姐的官方题解标程
代码:(我的)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=1e5+;
const ll MOD = 1e9+;
ll F[N], Finv[N], inv[N];
void init()
{
inv[] = ;
for(ll i = ; i < N; i ++)
{
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
F[] = Finv[] = ;
for(ll i = ; i < N; i ++)
{
F[i] = F[i-] * 1ll * i % MOD;
Finv[i] = Finv[i-] * 1ll * inv[i] % MOD;
}
}
ll comb(ll n, ll m)//c(n,m);
{
if(m < || m > n) return ;
return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}
int main()
{
init();
int n,m;
while(~scanf("%d%d",&n,&m)){
ll cnt1=comb(n+m,n)*comb(n+m,n);
ll cnt2=comb(n+m,m-)*comb(n+m,n-);
ll ans=((cnt1-cnt2)%MOD+MOD)%MOD;
cout<<ans<<endl;
}
}
代码:(叉姐的官方标程)
#include <bits/stdc++.h> const int MOD = 1e9 + ; const int N = ; int dp[N][N]; void update(int& x, int a)
{
x += a;
if (x >= MOD) {
x -= MOD;
}
} int sqr(int x)
{
return 1LL * x * x % MOD;
} int main()
{
dp[][] = ;
for (int i = ; i < N; ++ i) {
for (int j = ; j < N; ++ j) {
if (i) {
update(dp[i][j], dp[i - ][j]);
}
if (j) {
update(dp[i][j], dp[i][j - ]);
}
}
}
int n, m;
while (scanf("%d%d", &n, &m) == ) {
printf("%d\n", static_cast<int>((sqr(dp[n][m]) + MOD - 1LL * dp[n - ][m + ] * dp[n + ][m - ] % MOD) % MOD));
}
}
溜了溜了。
牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学的更多相关文章
- 牛客网暑期ACM多校训练营 第九场
HPrefix Sum study from : https://blog.csdn.net/mitsuha_/article/details/81774727 k较小.分离x和k. 另外的可能:求a ...
- 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)
链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...
- 牛客网暑期ACM多校训练营(第五场):F - take
链接:牛客网暑期ACM多校训练营(第五场):F - take 题意: Kanade有n个盒子,第i个盒子有p [i]概率有一个d [i]大小的钻石. 起初,Kanade有一颗0号钻石.她将从第1到第n ...
- 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?
牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...
- 牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献)
牛客网暑期ACM多校训练营(第三场)H Diff-prime Pairs (贡献) 链接:https://ac.nowcoder.com/acm/contest/141/H来源:牛客网 Eddy ha ...
- 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)
2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...
- 牛客网暑期ACM多校训练营(第七场)Bit Compression
链接:https://www.nowcoder.com/acm/contest/145/C 来源:牛客网 题目描述 A binary string s of length N = 2n is give ...
- 牛客网暑期ACM多校训练营(第一场) - J Different Integers(线段数组or莫队)
链接:https://www.nowcoder.com/acm/contest/139/J来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言1048 ...
- 牛客网暑期ACM多校训练营(第九场) A题 FWT
链接:https://www.nowcoder.com/acm/contest/147/A来源:牛客网 Niuniu has recently learned how to use Gaussian ...
随机推荐
- web.py上传文件并解压
有个需求是从php端上传zip文件到python端并且解压到指定目录,以下是解决方法 1.python端,使用的web.py def POST(self): post_data = web.input ...
- 《Cracking the Coding Interview》——第18章:难题——题目11
2014-04-29 04:30 题目:给定一个由‘0’或者‘1’构成的二维数组,找出一个四条边全部由‘1’构成的正方形(矩形中间可以有‘0’),使得矩形面积最大. 解法:用动态规划思想,记录二维数组 ...
- Oracle 遇到的问题:IMP-00041: 警告: 创建的对象带有编译警告解决办法
出现IMP-00041: 警告: 创建的对象带有编译警告:以后再做数据迁移的时候需要额外注意,尤其用户中有视图或者触发器对象的时候.用户的环境是这样的,在库里有三个oracle的用户,其中一个用户中有 ...
- 【转载】Unity3D研究院transform.parent = parent坐标就乱了
昨天有朋友问我了一个问题,它将Hierarchy视图里的某个子节点下的GameObject拷贝到另外一个对象的子节点下面,他使用的方法就是 transform.parent = parent 但是拷贝 ...
- python杂七杂八知识点
1.中文编码问题解决办法:# _*_ coding:UTF8 _*_ 2.numpy.ndArray a = array([[1,2,3], [4, 5, 6]]) 3.numpy.argsort() ...
- 容器基础(二): 使用Namespace进行边界隔离
Linux Namespace 容器技术可以认为是一种沙盒(sandbox), 为了实现沙盒/容器/应用间的隔离,就需要一种技术来对容器界定边界,从而让容器不至于互相干扰.当前使用的技术就是Names ...
- NodeJs01 文件浏览器
ES6常用新语法 前言 是时候学点新的JS了! 为了在学习NodeJs之前,能及时用上语言的新特性,我们打算从一开始先学习一下JavaScript语言的最基本最常用新语法.本课程的内容,是已经假设你有 ...
- iOS大神班笔记04-View的加载
iOS开发中一个控制器创建View的过程(注意标注的地方): 1.通过storyboard加载 UIStoryboard的三个方法: + (UIStoryboard *)storyboardWithN ...
- 深入解析Vuex实战总结
这篇文章主要介绍了Vuex的初探与实战小结,写的十分的全面细致,具有一定的参考价值,对此有需要的朋友可以参考学习下.如有不足之处,欢迎批评指正. 1.背景 最近在做一个单页面的管理后台项目,为了提高开 ...
- 虚拟机——vmtools安装出现Detected GCC binary at usr.bin.gcc.
在安装VMWare Tools遇到过这样一个问题 Searching for GCC... Detected GCC binary at "/usr/bin/gcc". The p ...