#417 Div2 E (树上阶梯博弈)
#417 Div2 E
题意
给出一颗苹果树,设定所有叶子节点的深度全是奇数或偶数,并且包括根在内的所有节点上都有若干个苹果。
两人进行游戏,每回合每个人可以做下列两种操作中的一种:
- 每个人可以吃掉某个叶子节点上的部分苹果。
- 将某个非叶子结点上的部分苹果移向它的孩子。
吃掉树上最后一个苹果的人获胜。
后手可以在游戏开始之前交换两个不同节点的苹果,输出交换后能使得后手胜利的交换总的方案数。
分析
其实就是阶梯博弈裸题。
分两种情况:
- 叶子节点深度为奇数,那么只需要对所有深度为奇数的节点求异或和(Nim博弈),异或和等于 0 时先手必败,无论必败方怎么操作,必胜方都可以通过适当的操作抵消掉必败方的操作。在求方案数的时候,对于异或和为 0 的情况,分别在奇数深度节点和偶数深度节点内进行交换,然后遍历奇数深度的节点,从偶数深度节点内找到值为 xor_sum^odd[i] 的节点。
- 叶子节点深度为偶数,对深度为偶数的节点求异或和,其它同理。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
const int N = 1e7 + 5;
int n;
int has[MAXN];
int dep[MAXN];
vector<int> G[MAXN];
int oddxor, evenxor;
ll even, odd;
int evenn[N], oddn[N];
vector<int> oddv, evenv;
int f;
void dfs(int pre, int x, int d) {
dep[x] = d;
if(d & 1) {
odd++;
oddv.push_back(x);
oddn[has[x]]++;
oddxor ^= has[x];
} else {
even++;
evenv.push_back(x);
evenn[has[x]]++;
evenxor ^= has[x];
}
if(!G[x].size() && dep[x] & 1) f = 1;
for(int i = 0; i < G[x].size(); i++) {
int v = G[x][i];
if(v != pre) dfs(x, v, d + 1);
}
}
int main() {
cin >> n;
for(int i = 1; i <= n; i++) {
cin >> has[i];
}
for(int i = 2; i <= n; i++) {
int x;
cin >> x;
G[x].push_back(i);
}
ll ans = 0;
dfs(0, 1, 0);
if(f) {
if(!oddxor) {
ans += (even * even - even) / 2 + (odd * odd - odd) / 2;
}
for(int i = 0; i < oddv.size(); i++) {
if((oddxor ^ has[oddv[i]]) < N) ans += evenn[oddxor ^ has[oddv[i]]];
}
} else {
if(!evenxor) {
ans += (even * even - even) / 2 + (odd * odd - odd) / 2;
}
for(int i = 0; i < evenv.size(); i++) {
if((evenxor ^ has[evenv[i]]) < N) ans += oddn[evenxor ^ has[evenv[i]]];
}
}
cout << ans << endl;
return 0;
}
#417 Div2 E (树上阶梯博弈)的更多相关文章
- Codeforces Round #417 (Div. 2)A B C E 模拟 枚举 二分 阶梯博弈
A. Sagheer and Crossroads time limit per test 1 second memory limit per test 256 megabytes input sta ...
- HDU 4315 Climbing the Hill (阶梯博弈转尼姆博弈)
Climbing the Hill Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Su ...
- POJ1704 Georgia and Bob (阶梯博弈)
Georgia and Bob Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %I64d & %I64u Subm ...
- HDU 4315:Climbing the Hill(阶梯博弈)
http://acm.hdu.edu.cn/showproblem.php?pid=4315 题意:有n个人要往坐标为0的地方移动,他们分别有一个位置a[i],其中最靠近0的第k个人是king,移动的 ...
- HDU 5996:dingyeye loves stone(阶梯博弈)
http://acm.hdu.edu.cn/showproblem.php?pid=5996 题意:在一棵树上进行博弈,每次只能将当前的结点的石子放到父节点上,最后不能移动的输. 思路:比赛的时候想的 ...
- hdu 3389 Game (阶梯博弈)
#include<stdio.h> int main() { int t,n,ans; int i,j,x; scanf("%d",&t); ;j<=t; ...
- poj 1704 阶梯博弈
转自http://blog.sina.com.cn/s/blog_63e4cf2f0100tq4i.html 今天在POJ做了一道博弈题..进而了解到了阶梯博弈...下面阐述一下我对于阶梯博弈的理解. ...
- [BZOJ 1115] [POI2009] 石子游戏Kam 【阶梯博弈】
题目链接:BZOJ - 1115 题目分析 首先看一下阶梯博弈: 阶梯博弈是指:初始有 n 堆石子,每次可以从任意的第 i 堆拿若干石子放到第 i - 1 堆.最终不能操作的人失败. 解法:将奇数位的 ...
- codevs 1421 秋静叶&秋穣子(树上DP+博弈)
1421 秋静叶&秋穣子 题目描述 Description 在幻想乡,秋姐妹是掌管秋天的神明,作为红叶之神的姐姐静叶和作为丰收之神的妹妹穰子.如果把红叶和果实联系在一 起,自然会想到烤红薯 ...
随机推荐
- (原)App源码
序) 人生就像卫生纸,有事没事少扯 前言) 最近偶尔和一位极客大牛聊了一次,这个极客在汇编的造诣算是相当高,不过野路子出来看不起各种规矩,因此是适合做个自己蒙头研究技术的极客男,不适合大型团队,不适合 ...
- java中封装的概念
封装(Encapsulation)是类的三大特性之一, 就是将类的状态信息隐藏在类的内部,不允许外部程序直接访问, 而是通过该类提供的方法来实现对隐藏信息的操作和访问. 简而言之,就是隐藏内部实现,提 ...
- 构建Docker镜像两种方式的比较-Dockerfile方式和S2I方式
前言 写Dockerfile是构建Docker镜像最通常的方式,接触过Docker的童鞋多少了解一些.前段时间研究OpenShift(paas的一种),发现了另外一种构建Docker镜像的方式:S2I ...
- STL之算法使用简介
accumlate : iterator 对标志的序列中的元素之和,加到一个由 init 指定的初始值上.重载的版本不再做加法,而是传进来的二元操作符被应用到元素上. adjacent_differ ...
- HDU 4669 Mutiples on a circle 动态规划
参考了官方题解给的方法: 对于处理循环,官方给了一种很巧妙的方法: #include <cstdio> #include <cstring> #include <cstd ...
- 基于linux操作系统安装、使用memcached详解
1.memcached的应用背景及作用 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提供动态. ...
- 【CF edu 27 G. Shortest Path Problem?】
time limit per test 3 seconds memory limit per test 512 megabytes input standard input output standa ...
- [经验分享]Windows系统下生成IOS证书
我使用ApiCloud开发APP,开发后需要生成IOS的证书才能在项目开发控制台中进行编译,于是我在网上大海捞针似的寻找办法. 官方文档提供了使用苹果系统下生成IOS证书的步骤,对于我这个没有imac ...
- poj 2186 强连通入门题目
每头牛的梦想就是成为牛群中最受欢迎的牛. 在一群N(1 <= N <= 10,000)母牛中, 你可以得到M(1 <= M <= 50,000)有序的形式对(A,B),告诉你母 ...
- Windows转移FSMO角色
转移 FSMO 角色若要使用 Ntdsutil 实用工具转移 FSMO 角色,请按照下列步骤操作:1.登录到基于 Windows 2000 Server 或基于 Windows Server 2003 ...