BZOJ 1001……

并不会这个trick,所以笔记要详细一点。

前置知识 : 平面图转对偶图    传送门

听说直接$Dinic$就好了,还跑得比正解快……

首先我们按照平面图的定义,把网格图中所有的平面以及另加的起点和终点在新图中标号,一共有$(n - 1) * (m - 1) * 2 + 2$个点,标完样例之后大概是这样子的:

然后我们接着按照定义,把有相邻的边的点连上双向边,对于那些在边界上的边,我们分别选择和$st$和$ed$连边,具体来说是这样的:

红色的边和$st$连边,蓝色的边和$ed$连边,其他黑色的边和它相邻的两个联通块连边。

注意$n == 1$或者$m == 1$的时候其实是一条链的情况,只要把最小的边鸽掉就好了,这时候所有的边都是要从$st$出发连到$ed$的,但是我的写法会挂掉,所以需要拎出来特判一下。

容易发现这样子构图之后从$st$到$ed$的每一条路都对应了原图中左上角到右下角的一个鸽,这样子我们求一个最小鸽就变成了一个最短路,就能方便地跑过去了。

要注意一个细节就是说$st$和$ed$必须放在左下角和右上角(可以对调),因为我们在原图中是要从左上角到右下角求一个最小鸽,要不然就不代表从左上角到右下角的一个最小鸽了吧。

连完边之后的效果图大概是这个大神博客里面的样子。    戳这里

时间复杂度$O(nmlognm)$。

Code:

#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
using namespace std;
typedef pair <int, int> pin; const int N = 2e6 + ;
const int M = 6e6 + ; int n, m, tot = , head[N], dis[N];
bool vis[N]; struct Edge {
int to, nxt, val;
} e[M]; inline void add(int from, int to, int val) {
e[++tot].to = to;
e[tot].val = val;
e[tot].nxt = head[from];
head[from] = tot;
} inline void addEdge(int x, int y, int v) {
add(x, y, v), add(y, x, v);
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} priority_queue <pin> Q;
inline void dij(int st) {
memset(dis, 0x3f, sizeof(dis));
memset(vis, , sizeof(vis));
Q.push(pin(dis[st] = , st));
for(; !Q.empty(); ) {
int x = Q.top().second; Q.pop();
if(vis[x]) continue;
vis[x] = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(dis[y] > dis[x] + e[i].val) {
dis[y] = dis[x] + e[i].val;
Q.push(pin(-dis[y], y));
}
}
}
} int main() {
// freopen("5.in", "r", stdin); read(n), read(m);
int st = (n - ) * (m - ) * + , ed = st + ;
if(n == || m == ) {
for(int i = ; i <= n; i++)
for(int j = ; j < m; j++) {
int val; read(val);
addEdge(st, ed, val);
}
for(int i = ; i < n; i++)
for(int j = ; j <= m; j++) {
int val; read(val);
addEdge(st, ed, val);
}
for(int i = ; i < n; i++)
for(int j = ; j < m; j++) {
int val; read(val);
addEdge(st, ed, val);
}
} else {
for(int i = ; i <= n; i++)
for(int j = ; j < m; j++) {
int val; read(val);
if(i == ) addEdge(ed, * ((i - ) * (m - ) + j), val);
if(i == n) addEdge(st, * ((i - ) * (m - ) + j) - , val);
if(i != && i != n) addEdge( * ((i - ) * (m - ) + j), * ((i - ) * (m - ) + j) - , val);
}
for(int i = ; i < n; i++)
for(int j = ; j <= m; j++) {
int val; read(val);
if(j == ) addEdge(st, * ((i - ) * (m - ) + j) - , val);
if(j == m) addEdge(ed, * ((i - ) * (m - ) + j - ), val);
if(j != && j != m) addEdge( * ((i - ) * (m - ) + j) - , * ((i - ) * (m - ) + j) - , val);
}
for(int i = ; i < n; i++)
for(int j = ; j < m; j++) {
int val; read(val);
addEdge( * ((i - ) * (m - ) + j) - , * ((i - ) * (m - ) + j), val);
}
} dij(st); printf("%d\n", dis[ed]);
return ;
}

Luogu 4001 [BJOI2006]狼抓兔子的更多相关文章

  1. BZOJ1001 洛谷4001 [BJOI2006]狼抓兔子 题解

    题目 这个题目有多种解法,这个题也是一个比较经典的题了,正是因为他的多样的做法,这个题主要难在建图和优化,因为这是一个网格图,所以spfa肯定过不去,所以用最短路解法的话,只能用dij,而网络流也是要 ...

  2. BZOJ1001或洛谷4001 [BJOI2006]狼抓兔子

    BZOJ原题链接 洛谷原题链接 显然就是求最小割. 而对于一个平面图有结论,最大流=最小割=对偶图最短路. 所以这题可用最大流或是转换为对偶图求最短路,这里我是用的对偶图. 虽然理论上按上界算,这题\ ...

  3. P4001 [BJOI2006]狼抓兔子(对偶图)

    P4001 [BJOI2006]狼抓兔子 最短路+对偶图 看这题最容易想到的就是网络流.Dinic可以过,据说还跑得比正解快. 如果不写网络流,那么需要知道2个前置知识:平面图和对偶图(右转baidu ...

  4. BJOI2006狼抓兔子

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 9967  Solved: 2267[Submit][S ...

  5. 752. [BJOI2006] 狼抓兔子

    ★★★   输入文件:bjrabbit.in   输出文件:bjrabbit.out   简单对比时间限制:1 s   内存限制:162 MB Description   Source: Beijin ...

  6. [BJOI2006]狼抓兔子

    题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  7. 1001. [BJOI2006]狼抓兔子【最小割】

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  8. BZOJ1001 BJOI2006 狼抓兔子

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...

  9. [BJOI2006]狼抓兔子(网络流)

    题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

随机推荐

  1. mysql1130远程连接没有权限的解决方法

    网上查了半天,终于解决 远程连接没有权限的原因有两种,一个是因为mysql的限制,一个是防火墙的限制. ,解决防火墙限制: 在mysql服务主机上将防火墙关闭或者在防火墙高级设置里面加入出入站规则,加 ...

  2. windows下matplotlib的安装

    在上一篇中我想用matplotlib,无奈一直装不上,就在卸了又装装了又卸,反反复复之后,终于装好了. 初学python,首先就装了numpy,倒也没有多复杂,有需要的朋友可以直接http://sou ...

  3. bzoj3597 方伯伯运椰子

    有一个 DAG,有一个源点,一个汇点和很多条边,每条边有花费 $d_i$ 和最大流量 $c_i$,可以花 $b_i$ 的钱把最大流量增加 $1$,花 $a_i$ 的钱把最大流量减少 $1$ 现在要进行 ...

  4. UVA - 11925 Generating Permutations (思维,构造)

    给你一个长度为n(n<=300)的排列,有两种操作,第一种是交换前两个数,第二种是把第一个数放到最后,让你用不超过2n^2次的操作把一个初始为1-n升序的排列变为该排列. 一开始被紫薯蛋疼的翻译 ...

  5. python IOError: cannot identify image file

    转:http://blog.csdn.net/sinat_25704999/article/details/50118465

  6. shell for的用法

    #!/bin/sh for1(){ for i in 1 2 3 4 5 6do echo "$i"done } for1#!/bin/shfor2(){for i in {1.. ...

  7. C# winform窗口打开特效及窗口位置居中

    在启动一个程序时,我们希望窗口显示的位置处于屏幕的正中心,可以如下设置:  MainForm mainForm = new MainForm();  mainForm.StartPosition =  ...

  8. java文本文件读写

    java的IO系统中读写文件使用的是Reader和Writer两个抽象类,Reader中的read()和close()方法是抽象方法,Writer中的write().flush()和close()方法 ...

  9. Asp.net工作流workflow实战之工作流持久化(五)

    直接看msdn https://msdn.microsoft.com/zh-cn/library/ee395773(v=vs.100).aspx

  10. 在Azure上搭建L2TP服务器

    L2TP是常用的一种point-site的VPN.而目前在Azure上的VPN Gateway只支持IPsec和SSTP两种.如果客户需要L2TP服务器,需要自己在VM中搭建.本文将介绍如何在Azur ...