剑指offer:二维数组中的查找
题目
题目链接
剑指offer:二维数组中的查找
题目描述
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
解题思路
这题解题的关键在于数据是有序的,很自然的便想到使用二分法;在提交后在评论区发现了更优的解法(除了数据有序外,利用了数据按矩阵形式排列这一特点),会在下列代码中给出。
在使用二分法时,值得注意的是,不能将二维数组中所有元素看作单调递增排列的一维数组,从而对所有元素整体进行二分。题目仅说明数据在矩阵的每行每列各自具单调递增的性质;而行(或列)之间并没有确定的大小关系。例如,第一行可能是[4, 5, 6], 而第二行为[1, 2, 3],第二行元素可能小于第一行元素。
具体代码
1. 二分法
因为只能逐行进行二分,故算法时间复杂度为O(nlogm),n为矩阵行数,m为列数。
计算二分的中值mid时,推荐使用mid = (right - left) / 2 + left
而不是mid = (left + right) / 2
,这样能够避免加法溢出
class Solution {
public:
bool Find(int target, vector<vector<int> > array) {
// 求出矩阵行数row和列数col
int row = array.size();
int col = array[0].size();
int left;
int right;
int mid;
// 对数组逐行进行二分查找
for (int i = 0; i < row; i++) {
left = 0;
right = col - 1;
while (right >= left) {
mid = (right - left) / 2 + left; // 防止left+right导致加法溢出
if (array[i][mid] < target) {
left = mid + 1;
} else if (array[i][mid] > target) {
right = mid - 1;
} else {
return true;
}
}
}
return false;
}
};
2. 利用元素特殊的排列
利用元素排列的性质,对于左下角的元素来说,其同列上方的元素一定是小于它,其同行右方的元素一定是大于它;能够在推导的过程中跳过更多的错误元素。易知,算法时间复杂度为O(n+m)
class Solution {
public:
bool Find(int target, vector<vector<int> > array) {
// 求出矩阵行数row和列数col
int row = array.size();
int col = array[0].size();
// 初始从矩阵左下方开始查找
for (int i = row - 1, j = 0; i >= 0 && j < col; ) {
// 分三种情况
// 1. 当前位置元素大于目标位置元素,位置上移一行(i--)
// 2. 当前位置元素小于目标位置元素,位置右移一列(j++)
// 3. 当前位置元素等于目标位置元素,已找到,返回true
if (target < array[i][j]) {
i--;
} else if (target > array[i][j]) {
j++;
} else {
return true;
}
}
return false;
}
};
剑指offer:二维数组中的查找的更多相关文章
- (java)剑指offer二维数组中的查找
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从 上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. pu ...
- 剑指Offer 二维数组中的查找
题目描述 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路法一: * 矩阵是 ...
- 剑指Offer——二维数组中的查找
题目描述: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 分析: 因为二维数组 ...
- 剑指offer—二维数组中的查找
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
- 用js刷剑指offer(二维数组中的查找)
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
- 牛客网-剑指Offer 二维数组中的查找
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
- 剑指Offer_4_二维数组中的查找
题目描述 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...
- 面试题5-[剑指offer] 二维数组中的查找
题目 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...
- 剑指offer--1.二维数组中的查找
题目:在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...
- C#版剑指Offer-001二维数组中的查找
题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...
随机推荐
- 接口是否可继承接口? 抽象类是否可实现(implements)接口? 抽象类是否可继承实体类(concrete class)?
接口是否可继承接口? 抽象类是否可实现(implements)接口? 抽象类是否可继承实体类(concrete class)? 答:接口可以继承接口.抽象类可以实现(implements)接口,抽象类 ...
- windows安装配置mongodb及图形工具MongoVUE
解压安装包到D:\Program Files\mongodb 建立数据库目录 D:\Program Files\mongodb\data 建立日志目录 D:\Program Files\mongodb ...
- Core Location :⽤用于地理定位
Core Location :⽤用于地理定位 在移动互联⽹网时代,移动app能解决⽤用户的很多⽣生活琐事,⽐比如 导航:去任意陌⽣生的地⽅方 周边:找餐馆.找酒店.找银⾏行.找电影院 在上述应⽤用中, ...
- react搭建一个框架(react-redux-axios-antd Designs)
废话不多说,先给一个github案例:前往.. 1.create-react-app <文件名> 安装router:npm i react-router-dom -S; npm inst ...
- 时间复杂度 log n
时间复杂度 O(log n) 意味着什么? 预先知道算法的复杂度是一回事,了解其后的原理是另一件事情. 不管你是计算机科班出身还是想有效解决最优化问题,如果想要用自己的知识解决实际问题,你都必须理解时 ...
- js | JavaScript中数据类型转换总结
转载 在js中,数据类型转换分为显式数据类型转换和隐式数据类型转换. 1, 显式数据类型转换 a:转数字: 1)Number转换: 代码: var a = “123”; a = Number(a); ...
- exa命令详解
exa 是 ls 文件列表命令现代化替代品. 官网:https://the.exa.website/ GitHub:https://github.com/ogham/exa 后续整理中……
- 统计寄存器AX中1 的个数
;==================================== ; 统计寄存器AX中1 的个数 DATAS segment DATAS ends CODES segment START: ...
- PHP 面向对象 static 和 self 的区别
一.前言 php是世界上最好的语言 php从面向过程走到现在成熟的面向对象体系, 在php面向对象中,静态变量的调用我们可以用这两个self::method和 static::method, 但是很多 ...
- iOS-修改modal出来的控制器的大小
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event{ static BOOL sh ...