浅谈线段树合并:https://www.cnblogs.com/AKMer/p/10251001.html

题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=3307

每次放物资就树上差分一下,然后用线段树维护差分值\(max\),自底向上合并统计答案即可。

时间复杂度:\(O(nlogn)\)

空间复杂度:\(O(nlogn)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=1e5+5; int n,m,tot,cnt;
int f[maxn][18];
int rt[maxn],dep[maxn],ans[maxn];
int X[maxn],Y[maxn],Z[maxn],tmp[maxn];
int now[maxn],pre[maxn*2],son[maxn*2]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} namespace T {
int tot;
int ls[maxn*50],rs[maxn*50];
struct tree_node {int cnt,id;}tree[maxn*50]; tree_node calc(tree_node a,tree_node b) {
if(a.cnt>b.cnt)return a;
if(a.cnt<b.cnt)return b;
if(a.id<b.id)return a;
return b;
} void update(int p) {
tree[p]=calc(tree[ls[p]],tree[rs[p]]);
if(!tree[p].cnt)tree[p].id=0;
} void change(int &p,int l,int r,int pos,int v) {
if(!p)p=++tot;
if(l==r) {
if(!tree[p].id)tree[p].id=l;
tree[p].cnt+=v;return;
}
int mid=(l+r)>>1;
if(pos<=mid)change(ls[p],l,mid,pos,v);
else change(rs[p],mid+1,r,pos,v);
update(p);
} int merge(int a,int b) {
if(!a||!b)return a+b;
if(!ls[a]&&!rs[a]&&!ls[b]&&!rs[b]) {
tree[a].cnt+=tree[b].cnt;
return a;
}
ls[a]=merge(ls[a],ls[b]);
rs[a]=merge(rs[a],rs[b]);
update(a);return a;
}
} void add(int a,int b) {
pre[++tot]=now[a];
now[a]=tot,son[tot]=b;
} void dfs(int fa,int u) {
dep[u]=dep[fa]+1;
f[u][0]=fa;
for(int i=1;i<18;i++)
f[u][i]=f[f[u][i-1]][i-1];
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(v!=fa)dfs(u,v);
} void make_ans(int fa,int u) {
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(v!=fa)make_ans(u,v),rt[u]=T::merge(rt[u],rt[v]);
if(!T::tree[rt[u]].cnt)ans[u]=0;//这里要加特判是因为有可能线段树只有一个结点并且加成了0
else ans[u]=T::tree[rt[u]].id;
} int lca(int a,int b) {
if(dep[a]<dep[b])swap(a,b);
for(int i=17;~i;i--)
if(dep[f[a][i]]>=dep[b])
a=f[a][i];
if(a==b)return a;
for(int i=17;~i;i--)
if(f[a][i]!=f[b][i])
a=f[a][i],b=f[b][i];
return f[a][0];
} int main() {
n=read(),m=read();
for(int i=1;i<n;i++) {
int a=read(),b=read();
add(a,b),add(b,a);
}
dfs(0,1);
for(int i=1;i<=m;i++)
X[i]=read(),Y[i]=read(),tmp[i]=Z[i]=read();
sort(tmp+1,tmp+m+1);
cnt=unique(tmp+1,tmp+m+1)-tmp-1;
for(int i=1;i<=m;i++)
Z[i]=lower_bound(tmp+1,tmp+cnt+1,Z[i])-tmp;
for(int i=1;i<=m;i++) {
int x=X[i],y=Y[i],z=Z[i];
int fa=lca(x,y);
T::change(rt[x],1,cnt,z,1);
T::change(rt[y],1,cnt,z,1);
T::change(rt[fa],1,cnt,z,-1);
T::change(rt[f[fa][0]],1,cnt,z,-1);
}
make_ans(0,1);
for(int i=1;i<=n;i++)
printf("%d\n",tmp[ans[i]]);
return 0;
}

BZOJ3307:雨天的尾巴的更多相关文章

  1. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

  2. [bzoj3307]雨天的尾巴_线段树合并

    雨天的尾巴 bzoj-3307 题目大意:N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. ...

  3. BZOJ3307 雨天的尾巴

    首先考虑序列怎么做... 只要把操作差分了,记录在每个点上 然后维护一棵权值线段树,表示每个颜色出现的次数,支持单点修改和查询最大值操作 只要把序列扫一遍就好了,时间复杂度$O(n + m*logZ) ...

  4. BZOJ3307雨天的尾巴——线段树合并

    题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入 第一行数字N,M接下来N ...

  5. [洛谷P4556][BZOJ3307]雨天的尾巴-T3订正

    线段树合并+树上差分 题目链接(···) 「简单」「一般」——其实「一般」也只多一个离散化 考试时想法看>这里< 总思路:先存所有的操作,离散化,然后用树上差分解决修改,用权值线段树维护每 ...

  6. [BZOJ3307]:雨天的尾巴(LCA+树上差分+权值线段树)

    题目传送门 题目描述: N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入格式: 第一 ...

  7. bzoj3307 雨天的尾巴 题解(线段树合并+树上差分)

    Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后,每个点存放最多的是哪种物品. Input ...

  8. bzoj3307雨天的尾巴(权值线段树合并/DSU on tree)

    题目大意: 一颗树,想要在树链上添加同一物品,问最后每个点上哪个物品最多. 解题思路: 1.线段树合并 假如说物品数量少到可以暴力添加,且树点极少,我们怎么做. 首先在一个树节点上标记出哪些物品有多少 ...

  9. bzoj3307 雨天的尾巴题解及改题过程(线段树合并+lca+树上差分)

    题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入格式 第一行数字N,M接下 ...

  10. [BZOJ3307] 雨天的尾巴-----------------线段树进阶

    虽然是个板子,但用到了差分思想. Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最 ...

随机推荐

  1. java拾遗3----XML解析(三) StAX PULL解析

    使用PULL方式解析XML: Pull是STAX的一个实现 StAX是The Streaming API for XML的缩写,一种利用拉模式解析(pull-parsing)XML文档的API StA ...

  2. 什么是GIL锁以及作用

    全局解释锁,每次只能一个线程获得cpu的使用权:为了线程安全,也就是为了解决多线程之间的数据完整性和状态同步而加的锁,因为我们知道线程之间的数据是共享的.

  3. codeforces Gravity Flip 题解

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  4. java基础入门之数组循环初始化

    /* Name:数组循环化 Power by Stuart Date:2015-4-23 */public class ArrayTest02{ public static void main (St ...

  5. activiti--5 -----------------Activiti 工作流 流程各个步骤所涉及到的表

    ACT_RE_*: 'RE'表示repository. 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等). ACT_RU_*: 'RU'表示runtime. 这些运行时的表,包含流程实例 ...

  6. Nvidia NVENC 硬编码预研总结

    本篇博客记录NVENC硬编码的预研过程 github:  https://github.com/MarkRepo/NvencEncoder 步骤如下: (1)环境搭建 (2)demo编译,测试,ARG ...

  7. Django模型系统——ORM表结构对应关系

    对于数据库来说一般表结构只会有三种对应关系,分别是一对一.一对多和多对一,下面分别介绍: 1.一对多 何为一对多,例如一个学生只可能有一个班级,一个班级却又多个学生,班级表和学生表就是一对多的关系. ...

  8. 小程序网络请求arraybuffer 转为base64

    wx.request({ url: result.tempFilePath, method: 'GET', responseType: 'arraybuffer', success: function ...

  9. Linux mint

    最近一直在配置vim, 今天终于配的差不多了,拿出来晒晒,^_^ . 附上一段Linux Mint 的简介(来自Wiki). Linux Mint是一种基于Ubuntu开发出的Linux操作系统.由L ...

  10. 通过套接字(socket)和UDP协议实现网络通信

    UDP---用户数据报协议,是一个简单的面向数据报的运输层协议.(无连接.封包.大小限制.速度快). 一.UDP协议的特点: 将数据及源和目的地封装成数据包中,不需要建立连接. 每个数据报的大小限制在 ...