Link:

POJ 2373 传送门

Solution:

一开始想错方向的一道简单$dp$,不应该啊……

我一开始的想法是以$cows' ranges$的节点为状态来$dp$

但明显一个灌溉的区间的两边不一定都在$cows's ranges$上,

因此应该以长为$L$的$field$上的每一个偶数节点为状态来$dp$,

这样转移方程就很容易了:

$dp[i]=min\{ dp[j] \} +1(2*a\le i-j\le 2*b)$

由于$dp[j]$具有决策单调性(对于节点$i$,$k$比$j$更优$(j<k)$,那么对于后面任意一个节点$j$都优于$k$)

于是使用单调队列维护一个$dp$值递增,离起点距离递增的序列,每次弹出$i-q[l]>=2*b$的$l$

为了处理$cows' ranges$上的节点,使用差分将在区间内的节点打上标记,遇到时跳过即可

Note:这里的特判依然要注意,如果对于一个非终点的节点找不到符合的点,不代表无解!跳过即可

Code:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring> using namespace std;
const int MAXN=1e6+; int n,L,a,b,dp[MAXN],pre[MAXN],q[MAXN],l,r; int main()
{
scanf("%d%d%d%d",&n,&L,&a,&b);
for(int i=;i<=n;i++)
{
int x,y;scanf("%d%d",&x,&y);
pre[x+]++;pre[y]--;
if(y-x>*b){printf("-1");return ;}
}
for(int i=;i<=L;i++) pre[i]+=pre[i-]; l=r=;q[]=;
for(int i=*a;i<=L;i+=)
{
if(pre[i]) continue;
while(l<=r && i-q[l]>*b) l++;
if(l>r){printf("-1");return ;}
if(i-q[l]<*a) continue; //对不符合条件的数的处理 dp[i]=dp[q[l]]+;
while(l<=r && dp[i]<dp[q[r]]) r--;q[++r]=i;
}
if(!dp[L]) printf("-1"); //特例处理
else printf("%d",dp[L]);
return ;
}

Review:

(1)还是要对特判细节想清楚啊……

(2)对于有决策单调性的题目想到单调性优化

(3)选择$dp$状态时要考虑状态集是否包含了所有“过程”中的“终点”

(如果按$cows' ranges$选取则不能)

[POJ 2373][BZOJ 1986] Dividing the Path的更多相关文章

  1. POJ 2373 Dividing the Path(DP + 单调队列)

    POJ 2373 Dividing the Path 描述 农夫约翰的牛发现,在他的田里沿着山脊生长的三叶草是特别好的.为了给三叶草浇水,农夫约翰在山脊上安装了喷水器. 为了使安装更容易,每个喷头必须 ...

  2. poj 2373 Dividing the Path

    Dividing the Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2858   Accepted: 1064 ...

  3. poj2373 Dividing the Path

    Dividing the Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5060   Accepted: 1782 ...

  4. 【POJ】2373 Dividing the Path(单调队列优化dp)

    题目 传送门:QWQ 分析 听说是水题,但还是没想出来. $ dp[i] $为$ [1,i] $的需要的喷头数量. 那么$ dp[i]=min(dp[j])+1 $其中$ j<i $ 这是个$ ...

  5. Dividing the Path POJ - 2373(单调队列优化dp)

    给出一个n长度的区间,然后有一些小区间只能被喷水一次,其他区间可以喷水多次,然后问你要把这个区间覆盖起来最小需要多少喷头,喷头的半径是[a, b]. 对于每个只能覆盖一次的区间,我们可以把他中间的部分 ...

  6. Dividing the Path POJ - 2373 dp

    题意:你有无数个长度可变的区间d  满足 2a<=d<=2b且为偶数. 现在要你用这些区间填满一条长为L(L<1e6且保证是偶数)的长线段. 满足以下要求: 1.可变区间之间不能有 ...

  7. POJ 2373 Dividing the Path (单调队列优化DP)题解

    思路: 设dp[i]为覆盖i所用的最小数量,那么dp[i] = min(dp[k] + 1),其中i - 2b <= k <= i -2a,所以可以手动开一个单调递增的队列,队首元素就是k ...

  8. HDU 3062 && HDU 1824 && POJ 3678 && BZOJ 1997 2-SAT

    一条边<u,v>表示u选那么v一定被选. #include <iostream> #include <cstring> #include <cstdio> ...

  9. [USACO2004][poj2373]Dividing the Path(DP+单调队列)

    http://poj.org/problem?id=2373 题意:一条直线分割成N(<=25000)块田,有一群奶牛会在其固定区域吃草,每1把雨伞可以遮住向左右延伸各A到B的区域,一只奶牛吃草 ...

随机推荐

  1. .net 匿名方法

    匿名方法 核心就是lambda语法,下面是使用举例: var conn= MySqlHelper.GetConn(); var list=conn.Query<User>("SE ...

  2. Git——1.简介

    关于版本控制 Git基础 安装Git 初始运行Git前的配置 获取帮助 关于版本控制 版本控制(VCS)是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统. 本地版本控制系统 大多都 ...

  3. 批量部署ssh免密登陆

    #!/bin/bash#set -xservers="10.254.192.xx10.254.192.xx10.254.192.xx"passwd="xxxxxxxx&q ...

  4. 推荐系统评测指标--准确率(Precision)和召回率(Recall)、F值(F-Measure)

    转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个 ...

  5. 史林枫:开源HtmlAgilityPack公共小类库封装 - 网页采集(爬虫)辅助解析利器【附源码+可视化工具推荐】

    做开发的,可能都做过信息采集相关的程序,史林枫也经常做一些数据采集或某些网站的业务办理自动化操作软件. 获取目标网页的信息很简单,使用网络编程,利用HttpWebResponse.HttpWebReq ...

  6. spring 配置问题记录1-@ResponseBody和favorPathExtension

    在搭建springmvc+easyui的项目时,有一个地方参照网上说的方法一直没实现出来, 就是前台的datagrid的数据渲染不上去, 尝试了好多种方法,包括也找了目前手里的项目来进行比较,也没发现 ...

  7. WeUI 在小程序中使用

    才接触小程序.想找个ui框架..也不知道咋弄: 下载地址:点击打开链接 将weui-wxss-master\dist\style\weui.wxss文件导入到小程序项目的根目录下 引入weui.wxs ...

  8. [poj] 3907 Build Your Home || 求多边形面积

    原题 多组数据,到0为止. 每次给出按顺序的n个点(可能逆时针,可能顺时针),求多边形面积(保留整数) 多边形面积为依次每条边(向量)叉积/2的和 \(S=\sum _{i=1}^{n-1}p[i]* ...

  9. 如何得到一个接口所有的实现类(及子接口)?例如:Eclipse IDE

    (一)Eclipse IDE的做法 它会解析所有的Java文件.Class文件. 技巧:在Eclipse中,选中Interface,按下F4,就可以查看到所有的实现类及子接口. 例如: (二)自己怎么 ...

  10. Tomcat学习笔记(三)

    Tomcat连接器 tomcat连接器是tomcat的一个核心组件,在tomcat4中的实现原理如下 1.实现Connector接口 2.创建Request对象 3.创建Response对象 tomc ...