UVA 10081 Tight numbers(POJ 2537)
直接看代码就OK。思路比较简单。就是注意概率要在转移过程中算出来。不能算成成立的方案书除以总方案数(POJ的这道题可以这么干。数据很水么。另外POJ要用%.5f,%.5lf 会WA。)
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
double dp[][];
int N,K;
void slove()
{
if (K <= ) {puts("100.00000");return;}
for (int i = ;i < ; i++) for (int j = ;j <; j++) dp[i][j]=0.0;
for (int i = ;i <= K; i++) dp[][i]=100.0/(double)(K+);
for (int i = ; i <= N; i++)
{
dp[i][] = 1.0/(double)(K+) * ( dp[i-][] + dp[i-][]);
for (int j = ; j <= K ; j++)
{
if (j == K) dp[i][j] = 1.0/(double)(K+) * (dp[i-][K] + dp[i-][K-]);
else dp[i][j] = 1.0/(double)(K+) * (dp[i-][j-] + dp[i-][j] + dp[i-][j+]);
}
}
double ans=0.0;
for (int i = ;i <= K; i ++) ans+=dp[N][i];
printf("%.5lf\n",ans);
}
int main()
{
while (scanf("%d%d",&K,&N)!=EOF)
slove();
return ;
}
UVA 10081 Tight numbers(POJ 2537)的更多相关文章
- Uva 10081 Tight words (概率DP)
Time limit: 3.000 seconds Given is an alphabet {0, 1, ... , k}, 0 <= k <= 9 . We say that a wo ...
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
- UVA - 13022 Sheldon Numbers(位运算)
UVA - 13022 Sheldon Numbers 二进制形式满足ABA,ABAB数的个数(A为一定长度的1,B为一定长度的0). 其实就是寻找在二进制中满足所有的1串具有相同的长度,所有的0串也 ...
- UVA - 136 Ugly Numbers (有关set使用的一道题)
Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequence1, 2, 3, 4, 5, 6, 8, 9, ...
- UVA 10125 - Sumsets(POJ 2549) hash
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Mathematics:Pseudoprime numbers(POJ 3641)
强伪素数 题目大意:利用费马定理找出强伪素数(就是本身是合数,但是满足费马定理的那些Carmichael Numbers) 很简单的一题,连费马小定理都不用要,不过就是要用暴力判断素数的方法先确定是 ...
- POJ2402/UVA 12050 Palindrome Numbers 数学思维
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...
随机推荐
- 012---Django的用户认证组件
知识预览 用户认证 回到顶部 用户认证 auth模块 ? 1 from django.contrib import auth django.contrib.auth中提供了许多方法,这里主要介绍其中的 ...
- 005--Django2.0的路由层
URL配置就像Django所支撑的网站目录,它的本质是每条URL调用的视图函数的映射表,每一个请求执行对应的视图函数. 1.简单的路由配置 from django.contrib import ad ...
- Android面试收集录 Android布局
1.请说出Android中的五种布局,并介绍作用? FrameLayout(堆栈布局),层叠方式显示,类似于PhotoShop上的层叠图层. LinearLayout(线性布局),将视图以水平或者垂直 ...
- STM32无法使用IAR下载程序问题
一开始建立了工程,然后程序下载都很正常.不知道什么情况自己下载代码之后,再重新下载代码无法成功. 我按照提示找了一下FlashStm32f30x8.flash这个文件,却发现IAR的目录下没并没有.又 ...
- SQL语句知识点
PERSON表 NUMBER NAME SEX AGE 1 THERON male 19 2 JACK male 20 3 LUCY female 20 1.SELECT选择 SELECT 列 ...
- Spring---BeanFactory与ApplicationContext简介
BeanFactory概念 Spring通过一个配置文件描述bean和bean之间的依赖关系,然后利用java语言的反射功能实例化bean,并建立bean之间的依赖关系.Spring的IOC容器在完成 ...
- CodeForces 873D Merge Sort 构造 分治
题意 给出一个归并排序的算法\(mergesort\),如果对于当前区间\([l, r)\)是有序的,则函数直接返回. 否则会分别调用\(mergesort(l, mid)\)和\(mergesort ...
- Druid数据库连接池及内置监控的配置和使用
Druid介绍 Druid首先是一个数据库连接池,并且是目前最好的数据库连接池,在功能.性能.扩展性方面,都超过其他数据库连接池,包括DBCP.C3P0.BoneCP.Proxool.JBoss Da ...
- laravel5.5事件系统
目录 1 注册事件和监听器 2 定义事件 3 定义监听器 4 分发事件 更多使用方法 1. 可以手动注册事件 2. 事件监听器中调用队列 3.事件订阅者 1 注册事件和监听器 1.修改EventSer ...
- webdriver--单选、复选及下拉框的定位
单选radiobutton的操作 两种情况,一种是各个button元素的属性都有唯一定位值,可以直接用属性唯一值定位:另一种就是一组各方面属性值都一样的radiobutton,除了text,可以用组元 ...