最近用到这方面的知识,感觉这篇文章写的很好,为了方便自己查阅,就搬运了过来,如果牵涉到侵权,请联系我,我会删除该博文!!!

我们知道做深度学习离不开GPU,不过一直以来对GPU和CPU的差别,CUDA以及cuDNN都不是很了解,所以找了些资料整理下,希望不仅可以帮助自己理解,也能够帮助到其他人理解。

先来讲讲CPU和GPU的关系和差别吧。截图来自资料1(CUDA的官方文档):

从上图可以看出GPU(图像处理器,Graphics Processing Unit)和CPU(中央处理器,Central Processing Unit)在设计上的主要差异在于GPU有更多的运算单元(如图中绿色的ALU),而Control和Cache单元不如CPU多,这是因为GPU在进行并行计算的时候每个运算单元都是执行相同的程序,而不需要太多的控制。Cache单元是用来做数据缓存的,CPU可以通过Cache来减少存取主内存的次数,也就是减少内存延迟(memory latency)。GPU中Cache很小或者没有,因为GPU可以通过并行计算的方式来减少内存延迟。因此CPU的Cahce设计主要是实现低延迟,Control主要是通用性,复杂的逻辑控制单元可以保证CPU高效分发任务和指令。所以CPU擅长逻辑控制,是串行计算,而GPU擅长高强度计算,是并行计算。打个比方,GPU就像成千上万的苦力,每个人干的都是类似的苦力活,相互之间没有依赖,都是独立的,简单的人多力量大;CPU就像包工头,虽然也能干苦力的活,但是人少,所以一般负责任务分配,人员调度等工作。

可以看出GPU加速是通过大量线程并行实现的,因此对于不能高度并行化的工作而言,GPU就没什么效果了。而CPU则是串行操作,需要很强的通用性,主要起到统管和分配任务的作用。

——————————————华丽的分割线——————————————

CUDA的官方文档(参考资料1)是这么介绍CUDA的:a general purpose parallel computing platform and programming model that leverages the parallel compute engine in NVIDIA GPUs to solve many complex computational problems in a more efficient way than on a CPU.
换句话说CUDA是NVIDIA推出的用于自家GPU的并行计算框架,也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用。

接下来这段话摘抄自资料2。在 CUDA 的架构下,一个程序分为两个部份:host 端和 device 端。Host 端是指在 CPU 上执行的部份,而 device 端则是在显示芯片上执行的部份。Device 端的程序又称为 “kernel”。通常 host 端程序会将数据准备好后,复制到显卡的内存中,再由显示芯片执行 device 端程序,完成后再由 host 端程序将结果从显卡的内存中取回。
接下来这段话摘抄自资料2。在 CUDA 架构下,显示芯片执行时的最小单位是thread。数个 thread 可以组成一个block。一个 block 中的 thread 能存取同一块共享的内存,而且可以快速进行同步的动作。每一个 block 所能包含的 thread 数目是有限的。不过,执行相同程序的 block,可以组成grid。不同 block 中的 thread 无法存取同一个共享的内存,因此无法直接互通或进行同步。因此,不同 block 中的 thread 能合作的程度是比较低的。不过,利用这个模式,可以让程序不用担心显示芯片实际上能同时执行的 thread 数目限制。例如,一个具有很少量执行单元的显示芯片,可能会把各个 block 中的 thread 顺序执行,而非同时执行。不同的 grid 则可以执行不同的程序(即 kernel)。
——————————————华丽的分割线——————————————

cuDNN(CUDA Deep Neural Network library):是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果你要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库。

GPU,CUDA,cuDNN的理解的更多相关文章

  1. 真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)【转】

    本文转载自:https://blog.csdn.net/u010801439/article/details/80483036 ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前, ...

  2. ubuntu16.04+caffe+GPU+cuda+cudnn安装教程

    步骤简述: 1.安装GPU驱动(系统适配,不采取手动安装的方式) 2.安装依赖(cuda依赖库,caffe依赖) 3.安装cuda 4.安装cudnn(只是复制文件加链接,不需要编译安装的过程) 5. ...

  3. GPU CUDA之——深入理解threadIdx

    http://blog.csdn.net/canhui_wang/article/details/51730264 摘要 本文主要讲述CUDA的threadIdx. 1. Grid,Block和Thr ...

  4. 【软件安装与环境配置】ubuntu16.04+caffe+nvidia+CUDA+cuDNN安装配置

    前言 博主想使用caffe框架进行深度学习相关网络的训练和测试,刚开始做,特此记录学习过程. 环境配置方面,博主以为最容易卡壳的是GPU的NVIDIA驱动的安装和CUDA的安装,前者尝试的都要吐了,可 ...

  5. ubuntu 16.04 安装 tensorflow-gpu 包括 CUDA ,CUDNN,CONDA

    ubuntu 16.04 安装 tensorflow-gpu 包括 CUDA ,CUDNN,CONDA 显卡驱动装好了,如图: 英文原文链接: https://github.com/williamFa ...

  6. windows10+VS+CUDA+cuDNN+TensorFlow-gpu环境搭建(问题及解决)

    TensorFlow-gpu环境需要CUDA+cuDNN+python,CUDA又需要VS,所以,,,环境越来越大哈哈. 1.主要环境: Python 3.6 CUDA9.0 Cudann7.0 Te ...

  7. Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)

    目录 前言 第一步:安装Anaconda 1.下载和安装 2.配置Anaconda环境变量 第二步:安装TensorFlow-GPU 1.创建conda环境 2.激活环境 3.安装tensorflow ...

  8. Ubuntu18.04安装Tensorflow+cuda+cuDNN

    本文写的比较简单,期间遇到的一些小麻烦,自己不认为成为阻碍,所以没有详细写. 如有疑问可以联系QQ:2922530320 Pycharm Pycharm使用Anaconda Pycharm 在新建项目 ...

  9. caffe, caffe2, paddlepaddle, tensorflow对于cuda,cudnn,protobuf依赖的纠葛

    由于在学习神经网络,为了尝试各种深度学习框架,电脑上目前安装了caffe, caffe2, paddlepaddle, tensorflow三款主流框架,但是安装过程中真是痛不欲生. 且不说单单安装一 ...

随机推荐

  1. bzoj 1997 [Hnoi2010]Planar——2-SAT+平面图的一个定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1997 平面图的一个定理:若边数大于(3*点数-6),则该图不是平面图. 然后就可以2-SAT ...

  2. unix下网络编程之I/O复用(三)

    poll函数 在上文unix下网络编程之I/O复用(二)中已经介绍了select函数的相关使用,本文将介绍另一个常用的I/O复用函数poll.poll提供的功能与select类似,不过在处理流设备时, ...

  3. PHP5之前的构造函数与PHP5之后的构造函数的区别

    在PHP5以前的版本中,构造函数的名称必须与类名相同,这种方法在PHP5中仍然可以使用,但现在已经很少有人用了. PHP5以及之后的版本,构造函数用__construct()方法来声明,这样做的好处是 ...

  4. JSF拦截ajax请求并传递参数方法

    我们可以利用f:ajax做一些简单的ajax操作,但是遇到复杂的逻辑,它不能简单的去实现,jsf提供了一种方法,可以调用它内部的js方法去实现复杂的逻辑. 首先要在页面引入jsf的js文件: < ...

  5. H264码流结构分析和rtp打包结构详解

    网络抽象层单元类型 (NALU): NALU头由一个字节组成,它的语法如下: +---------------+      |0|1|2|3|4|5|6|7|      +-+-+-+-+-+-+-+ ...

  6. 【转】 Pro Android学习笔记(八二):了解Package(1):包和进程

    文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件.转载须注明出处:http://blog.csdn.net/flowingflying/ 在之前,我们已经学习了如何签发apk,见P ...

  7. xcode修改横屏

    1.修改工程属性 2.修改info.plist文件

  8. 为什么in_array(0, ['a', 'b', 'c'])返回true

    为什么in_array(0, ['a', 'b', 'c'])返回true 目录 1 类型转换 2 严格比较 3 false和null 4 数组中有true 在PHP中,数据会自动转换类型后进行比较. ...

  9. python paramiko 调试

    #!/usr/bin/env python #-*- encoding:utf-8 -*- import paramiko transport = paramiko.Transport(('10.34 ...

  10. Oracle 11g oracle 用户密码过期问题 (ZT)

    http://www.blogjava.net/freeman1984/archive/2013/04/23/398301.html Oracle 11g 之前默认的用户时是没有密码过期的限制的,在O ...