网络编程:多进程实现TCP服务端并发、互斥锁代码实操、线程理论、创建线程的两种方式、线程的诸多特性、GIL全局解释器锁、验证GIL的存在
多进程实现TCP服务端并发
import socket
from multiprocessing import Process
def get_server():
server = socket.socket()
server.bind(('127.0.0.1', 8080))
server.listen(5)
return server
def get_talk(sock):
while True:
data = sock.recv(1024)
print(data.decode('utf8'))
sock.send(data.upper())
if __name__ == '__main__':
server = get_server()
while True:
sock, addr = server.accept()
# 开设多进程去聊天
p = Process(target=get_talk, args=(sock,))
p.start()
互斥锁代码实操
锁:建议只加载操作数据的部分 否则整个程序的效率会极低
from multiprocessing import Process, Lock
import time
import json
import random
def search(name):
with open(r'data.json', 'r', encoding='utf8') as f:
data = json.load(f)
print('%s查看票 目前剩余:%s' % (name, data.get('ticket_num')))
def buy(name):
# 先查询票数
with open(r'data.json', 'r', encoding='utf8') as f:
data = json.load(f)
# 模拟网络延迟
time.sleep(random.randint(1, 3))
# 买票
if data.get('ticket_num') > 0:
with open(r'data.json', 'w', encoding='utf8') as f:
data['ticket_num'] -= 1
json.dump(data, f)
print('%s 买票成功' % name)
else:
print('%s 买票失败 非常可怜 没车回去了!!!' % name)
def run(name, mutex):
search(name)
mutex.acquire() # 抢锁
buy(name)
mutex.release() # 释放锁
if __name__ == '__main__':
mutex = Lock() # 产生一把锁
for i in range(10):
p = Process(target=run, args=('用户%s号' % i, mutex))
p.start()
"""
锁有很多种 但是作用都一样
行锁 表锁 ...
"""
线程理论
进程
进程其实是资源单位 表示一块内存空间
线程
线程才是执行单位 表示真正的代码指令
我们可以将进程比喻是车间 线程是车间里面的流水线
一个进程内部至少含有一个线程
1.一个进程内可以开设多个线程
2.同一个进程下的多个线程数据是共享的
3.创建进程与线程的区别
创建进程的消耗要远远大于线程
创建线程的两种方式
from threading import Thread
import time
def task(name):
print(f'{name} is running')
time.sleep(0.1)
print(f'{name} is over')
t = Thread(target=task, args=('jason',))
t.start()
print('主线程')
# 第二种方式
class MyThread(Thread):
def run(self):
print('run is running')
time.sleep(1)
print('run is over')
obj = MyThread()
obj.start()
print('主线程')
线程的诸多特性
# 线程join方法
from threading import Thread
import time
def task(name):
print(f'{name} is running')
time.sleep(3)
print(f'{name} is over')
t = Thread(target=task, args=('jason',))
t.start()
t.join() # 主线程代码等待子线程代码运行完毕之后再往下执行
print('主线程')
"""
主线程为什么要等着子线程结束才会结束整个进程
因为主线程结束也就标志着整个进程的结束 要确保子线程运行过程中所需的各项资源
"""
# 同进程内多个线程数据共享
from threading import Thread
money = 100
def task():
global money
money = 1
t = Thread(target=task)
t.start()
t.join()
print(money)
# 思考:线程更改进程内数据,数据也会被更改
# 1
线程对象属性和方法
1、同一进程下多个线程的进程号一致
2、如何统计进程下活跃的线程数
active_count()
3、获取线程的名字
1.current_thread().name
MainThread # 主线程
Thread-1、Thread-2 # 子线程
2.self.name # 类对象获取线程名
GIL全局解释器锁
# 官方文档对GIL的解释
In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.
"""
1.在CPython解释器中存在全局解释器锁简称GIL
python解释器有很多类型
CPython JPython PyPython (常用的是CPython解释器)
2.GIL本质也是一把互斥锁 用来阻止同一个进程内多个线程同时执行(重要)
3.GIL的存在是因为CPython解释器中内存管理不是线程安全的(垃圾回收机制)
垃圾回收机制
引用计数、标记清除、分代回收
"""
验证GIL的存在
from threading import Thread
num = 100
def task():
global num
num -= 1
t_list = []
for i in range(100):
t = Thread(target=task)
t.start()
t_list.append(t)
for t in t_list:
t.join()
print(num)
GIL与普通互斥锁
既然CPython解释器中有GIL 那么我们以后写代码是不是就不需要操作锁了!!!
"""
GIL只能够确保同进程内多线程数据不会被垃圾回收机制弄乱
并不能确保程序里面的数据是否安全
"""
import time
from threading import Thread,Lock
num = 100
def task(mutex):
global num
mutex.acquire()
count = num
time.sleep(0.1)
num = count - 1
mutex.release()
mutex = Lock()
t_list = []
for i in range(100):
t = Thread(target=task,args=(mutex,))
t.start()
t_list.append(t)
for t in t_list:
t.join()
print(num)
注意:如果这里没加互斥锁mutex的时候,结果为99,为什么?
分析:因为如果没有互斥锁保证它独立运行完再运行下一个的话,每个线程获取到的money都是100,tmp-1都是99,那么最终结果也就是99
"""
GIL是一个纯理论知识 在实际工作中根本无需考虑它的存在
GIL作用面很窄 仅限于解释器级别
后期我们要想保证数据的安全应该自定义互斥锁(使用别人封装好的工具)
"""
python多线程是否有用
需要分情况
情况1
单个CPU
多个CPU
情况2
IO密集型(代码有IO操作)
计算密集型(代码没有IO)
1.单个CPU
IO密集型
多进程
申请额外的空间 消耗更多的资源
多线程
消耗资源相对较少 通过多道技术
ps:多线程有优势!!!
计算密集型
多进程
申请额外的空间 消耗更多的资源(总耗时+申请空间+拷贝代码+切换)
多线程
消耗资源相对较少 通过多道技术(总耗时+切换)
ps:多线程有优势!!!
2.多个CPU
IO密集型
多进程
总耗时(单个进程的耗时+IO+申请空间+拷贝代码)
多线程
总耗时(单个进程的耗时+IO)
ps:多线程有优势!!!
计算密集型
多进程
总耗时(单个进程的耗时)
多线程
总耗时(多个进程的综合)
ps:多进程完胜!!!
from threading import Thread
from multiprocessing import Process
import os
import time
def work():
# 计算密集型
res = 1
for i in range(1, 100000):
res *= i
if __name__ == '__main__':
# print(os.cpu_count()) # 12 查看当前计算机CPU个数
start_time = time.time()
# p_list = []
# for i in range(12): # 一次性创建12个进程
# p = Process(target=work)
# p.start()
# p_list.append(p)
# for p in p_list: # 确保所有的进程全部运行完毕
# p.join()
t_list = []
for i in range(12):
t = Thread(target=work)
t.start()
t_list.append(t)
for t in t_list:
t.join()
print('总耗时:%s' % (time.time() - start_time)) # 获取总的耗时
"""
计算密集型
多进程:5.665567398071289
多线程:30.233906745910645
"""
def work():
time.sleep(2) # 模拟纯IO操作
if __name__ == '__main__':
start_time = time.time()
# t_list = []
# for i in range(100):
# t = Thread(target=work)
# t.start()
# for t in t_list:
# t.join()
p_list = []
for i in range(100):
p = Process(target=work)
p.start()
for p in p_list:
p.join()
print('总耗时:%s' % (time.time() - start_time))
"""
IO密集型
多线程:0.0149583816528320
多进程:0.6402878761291504
"""
死锁现象
from threading import Thread, Lock
import time
mutexA = Lock()
mutexB = Lock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
mutexA.acquire() # 抢A锁
print(f'{self.name}抢到了A锁')
mutexB.acquire() # 抢B锁
print(f'{self.name}抢到了B锁')
mutexB.release() # 放B锁
mutexA.release() # 放A锁
def f2(self):
mutexB.acquire() # 抢B锁
print(f'{self.name}抢到了B锁')
time.sleep(2)
mutexA.acquire() # 抢A锁
print(f'{self.name}抢到了A锁')
mutexA.release() # 放A锁
mutexB.release() # 放B锁
for i in range(10): # 创建10个线程
t = MyThread()
t.start()
# 结果:
Thread-1抢到了A锁
Thread-1抢到了B锁
Thread-1抢到了B锁
Thread-2抢到了A锁
# 然后就产生阻塞现象了,因为最后线程2抢到A锁然后取抢B锁时,B锁还在线程1手里,然而线程1下面也要抢A锁,两者都进入阻塞
结论:
锁不能轻易使用并且以后我们也不会在自己去处理锁都是用别人封装的工具
ps:锁就算掌握了如何抢 如何放 也会产生死锁现象
网络编程:多进程实现TCP服务端并发、互斥锁代码实操、线程理论、创建线程的两种方式、线程的诸多特性、GIL全局解释器锁、验证GIL的存在的更多相关文章
- python GIL全局解释器锁,多线程多进程效率比较,进程池,协程,TCP服务端实现协程
GIL全局解释器锁 ''' python解释器: - Cpython C语言 - Jpython java ... 1.GIL: 全局解释器锁 - 翻译: 在同一个进程下开启的多线程,同一时刻只能有一 ...
- 进程池与线程池、协程、协程实现TCP服务端并发、IO模型
进程池与线程池.协程.协程实现TCP服务端并发.IO模型 一.进程池与线程池 1.线程池 ''' 开进程开线程都需要消耗资源,只不过两者比较的情况下线程消耗的资源比较少 在计算机能够承受范围内最大限度 ...
- TCP协议下的服务端并发,GIL全局解释器锁,死锁,信号量,event事件,线程q
TCP协议下的服务端并发,GIL全局解释器锁,死锁,信号量,event事件,线程q 一.TCP协议下的服务端并发 ''' 将不同的功能尽量拆分成不同的函数,拆分出来的功能可以被多个地方使用 TCP服务 ...
- 网络版shell之网络编程练习篇--telnet服务端
网络版shell之网络编程练习篇--telnet服务端 以前写过一个shell命令解释器,对与shell命令解释器的执行流程有了清晰的认识,这段时间学习网络编程,至于网络编程的细节以及知识点,已经 ...
- 8.14 day32 TCP服务端并发 GIL解释器锁 python多线程是否有用 死锁与递归锁 信号量event事件线程q
TCP服务端支持并发 解决方式:开多线程 服务端 基础版 import socket """ 服务端 1.要有固定的IP和PORT 2.24小时不间断提供服务 3.能够支 ...
- python并发编程-多线程实现服务端并发-GIL全局解释器锁-验证python多线程是否有用-死锁-递归锁-信号量-Event事件-线程结合队列-03
目录 结合多线程实现服务端并发(不用socketserver模块) 服务端代码 客户端代码 CIL全局解释器锁****** 可能被问到的两个判断 与普通互斥锁的区别 验证python的多线程是否有用需 ...
- 网络编程之多线程——GIL全局解释器锁
网络编程之多线程--GIL全局解释器锁 一.引子 定义: In CPython, the global interpreter lock, or GIL, is a mutex that preven ...
- Python并发编程-GIL全局解释器锁
Python并发编程-GIL全局解释器锁 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.GIL全局解释器锁概述 CPython 在解释器进程级别有一把锁,叫做GIL,即全局解释 ...
- 10 并发编程-(线程)-GIL全局解释器锁&死锁与递归锁
一.GIL全局解释器锁 1.引子 在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势 首先需要明确的一点是GIL并不是Python的特性,它是在实现Pyt ...
- 并发编程~~~多线程~~~守护线程, 互斥锁, 死锁现象与递归锁, 信号量 (Semaphore), GIL全局解释器锁
一 守护线程 from threading import Thread import time def foo(): print(123) time.sleep(1) print('end123') ...
随机推荐
- React Native入门 Enable live Reload
在开发项目时,有时一点点小修改就需要重新编译,打包,安装,效率比较低 RN 提供了一种实时重载 (Enable live Reload)的方式,来实现快速的调试开发,修改保存后会立刻载真机或模拟器中显 ...
- 动态调整日志级别思路&实现
引言 上篇文章 性能调优--小小的 log 大大的坑 已将详细的介绍了高并发下,不正确的使用日志姿势,可能会导致服务性能急剧下降问题.文末也给各位留下了解决方案--日志级别动态调整. 本文将详细介绍& ...
- 输入法词库解析(二)搜狗拼音细胞词库.scel(.qcel)
详细代码:https://github.com/cxcn/dtool 前言 .scel 是搜狗拼音输入法所使用的细胞词库格式,可以在 https://pinyin.sogou.com/dict/ 下载 ...
- day40-网络编程02
Java网络编程02 4.TCP网络通信编程 基本介绍 基于客户端--服务端的网络通信 底层使用的是TCP/IP协议 应用场景举例:客户端发送数据,服务端接收并显示控制台 基于Scoket的TCP编程 ...
- NLP新手入门指南|北大-TANGENT
开源的学习资源:<NLP 新手入门指南>,项目作者为北京大学 TANGENT 实验室成员. 该指南主要提供了 NLP 学习入门引导.常见任务的开发实现.各大技术教程与文献的相关推荐等内容, ...
- 前端必读3.0:如何在 Angular 中使用SpreadJS实现导入和导出 Excel 文件
在之前的文章中,我们为大家分别详细介绍了在JavaScript.React中使用SpreadJS导入和导出Excel文件的方法,作为带给广大前端开发者的"三部曲",本文我们将为大家 ...
- linux中通过date命令获取昨天或明天时间的方法
date命令可以获取当前的时间,通过man,可以看到date有很多参数可以用,很容易做到格式化 # 获取当前日期 date +"%F" 或者 date +"%Y-%m-% ...
- Linux恢复误删除的文件或者目录
文章转载自:https://www.jianshu.com/p/662293f12a47 linux不像windows有个回收站,使用rm -rf *基本上文件是找不回来的. 那么问题来了: 对于li ...
- POJ3398 Perfect Service (树形DP)
对于每个u要设置三维. dp[u][0]表示u是服务器,以u为根的最小服务器数,其子节点既可以是,也可以不是,dp[u][0]+=min(d[v][0],d[v][1]); dp[u][1]表示u不是 ...
- [Android开发学iOS系列] 快速上手UIKit
快速上手iOS UIKit UIKit是苹果官方的framework, 其中包含了各种UI组件, window和view, 事件处理, 交互, 动画, 资源管理等基础设施支持. 按照前面的介绍, 用U ...