本文从 《LSM-based Storage Techniques: A Survey》 摘取部分图片,来介绍 LSM tree 的相关内容。详细内容请查看论文原文。

in-place update V.S. out-of-place update

  • 索引结构通常有两种数据的更新策略:in-place update 和 out-of-place update。
  • in-place update:在原数据处覆盖写入,e.g. B+树。该策略读性能较好(只需要读一份数据);随机 IO导致写性能较差;空间碎片导致空间利用率下降。
  • out-of-place update:在新的地方写入更新后的数据(原数据不做变更), e.g. LSM tree。与 in-place update 相反,该策略写性能较好(顺序写);同一份数据保存多份导致读性能较差;顺序写减少空间碎片从而提高空间利用率。

LSM-tree 基本原理

  • LSM-tree 包含 C0, C1, …, Ck 共 k+1 层, 每一层的数据都是 B+ 树。其中 C0 层维护在内存中,而 C1, …, Ck 层维护在磁盘。
  • Write 操作: 每次写入数据都只写入 C0 层。
  • Point Query 操作:每次点查询操作会依次遍历 C0, C1, …, Ck, 返回查询到最新版本的数据。如果遍历完之后都没有查到数据,则该数据不存在。比如, 查询 key = b 的值, 在 C0 层查到 b=2, 直接返回该值,而不用继续遍历 C1, …, Ck。
  • Range Query 操作:范围查询会并发的在 C0, C1, …, Ck 查找指定范围的数据,然后根据优先级从高到低将每层的查询结果合并为最终的查询结果。 比如,查询结果为 <C0, a=1, b=2>, <C1, b=3, c=3>, 合并之后的最终结果为 a=1, b=2, c=3
  • Delete 操作:删除操作写入删除标记数据,由后台进程负责异步删除。
  • Merge 操作:C0, C1, …, Ck 每层容量固定,依次按照一定比率递增。当某层 Ci 数据规模达到该层容量上限,后台 Merge 进程 会将该层数据合入 Ci+1 层。

Merge 策略: Leveling Merge Policy V.S. Tiering Merge Policy

注:图中的数字表示 Index 的范围。如 0-100 指 Index 在 0-100 的数据可以保存在该 component。

  • Leveling Merge Policy:每一层只包含一个 component。L 层的 component 容量是 L-1 层的 T 倍。当 L 层达到其容量上限,会被合并到 L+1 层。如 Fig.3(a),L0 的数据达到上限,合入到 L1 层。
  • Tiering Merge Policy:每一层最多包含 T 个 component。当 L 层达到容量上限,它的 T 个 component 会合并为 L+1 层的一个 component。如果 L 为配置的最大层,则合并后的 component 保持在该层。如 Fig.3(b), T=2, L0 层的数据达到上限,它的 2 个component 合并为了 L1 层的一个新的 component。

Partition Policy: partitioned leveling merge policy V.S. partitioned tiering merge policy

LSM-tree 有两类比较常见的优化策略:布隆过滤器(Bloom Filter)和数据分区(Partitioning)。

  • 布隆过滤器(Bloom Filter):可以为每一棵 B+ 树或它的非叶子节点绑定一个布隆过滤器,以提高数据的查询效率。
  • 数据分区(Partitioning):可以将每一层的 component 拆分成更小的 partition(记作: SSTable)。数据分区可以提高 merge 的效率;减少merge 过程中对磁盘空间的浪费等。

不同的 merge policy, partioning 的处理方式也有所不同。

partitioned leveling merge policy

  • 每一层的数据被 partition 为多个相同大小的 SSTable。
  • L0 数据直接从内存 flush 而来,因此不需要进行 partition。
  • 读写操作与非 partitioned 的 leveling merge policy 一致。
  • Merge 流程: 将 L 层一个 SSTable merge 到 L+1 层,需要将 L+1 层所有和该 SSTable 有重叠 Index 的 SSTable 一起,合并为 L+1 层新的 SSTable。如 Fig.4 Merge 0-30(L1) 到 L2。L2 层与它 Index 有重叠的 SSTable 有 0-15(L2) 和 16-32(L2)。将0-30(L1), 0-15(L2) 和 16-32(L2) 三个 SSTable 一起合并为 L2 层新的 SSTable: 0-10(L2), 11-19(L2) 和 20-32(L2)。

partitioned tiering merge policy: vertical grouping V.S. horizontal grouping

tiering merge policy 将每层的数据分成不同的 Group 进行处理。将重合 Index 的 SSTable 拆分到同一个 Group 的策略称为 vertical grouping policy;将不重合 Index 的 SSTable 拆分到同一个 Group 的策略称为 horizontal grouping policy

  • partitioned tiering with vertical grouping

    • 每一层的 SSTable 被拆分为 Index 互相重叠的 Group。
    • Merge 操作:Fig.5 中, 0-31(L1), 0-30(L1) 中的 Index 在 0-15(可能) 部分 merge 为 0-13(L2) 所在 Group 的一个 SSTable,即 0-12(L2);其 Index 在 16-34(可能) 部分 merge 到 16-32(L2) 所在 Group 的一个 SSTable,即 17-31(L2)。
    • 查询操作: 在该策略下,每一层的查询操作需要查询该层 Index 覆盖的 Group 下的所有 SSTable 的情况。
    • 在这种策略下,上一层相同 Group 的 SSTable 需要 Merge 到下一层 Index 重叠的 Group 内,SSTable 大小不再固定。
  • partitioned tiering with horizontal grouping

  • 每一层大小固定的的 SSTable 被拆分为 Index 互不重叠的 Group。

  • 每一层包含一个接受上一层合入进来的新 SSTable 的 Group,称之为 active group

  • Merge 操作: 合并 L 层的某个 SSTable 时, 选择该层所有其他 group 中与其 Index 重叠的 SSTable,合并到 L+1 层 active group 中。 如 Fig.6, 选择该层其他 Group 与 35-70(L1) Index 重叠的 SSTable,即 35-65(L1)。将35-70(L1),35-65(L1) 合并到 L2 层的 active group 中,即 35-52(L2) 和 53-70(L2)。

Reference

图说论文《LSM-based Storage Techniques: A Survey》的更多相关文章

  1. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  2. 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角

    [论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys  ...

  3. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

  4. 论文笔记: Matrix Factorization Techniques For Recommender Systems

    Recommender system strategies 通过例子简单介绍了一下 collaborative filtering 以及latent model,这两个方法在之前的博客里面介绍过,不累 ...

  5. 【万字长文】使用 LSM Tree 思想实现一个 KV 数据库

    目录 设计思路 何为 LSM-Treee 参考资料 整体结构 内存表 WAL SSTable 的结构 SSTable 元素和索引的结构 SSTable Tree 内存中的 SSTable 数据查找过程 ...

  6. 浅析Hadoop文件格式

    Hadoop 作为MR 的开源实现,一直以动态运行解析文件格式并获得比MPP数据库快上几倍的装载速度为优势.不过,MPP数据库社区也一直批评Hadoop由于文件格式并非为特定目的而建,因此序列化和反序 ...

  7. hadoop 原理: 浅析Hadoop文件格式

    Hadoop 作为MR 的开源实现,一直以动态运行解析文件格式并获得比MPP数据库快上几倍的装载速度为优势.不过,MPP数据库社区也一直批评Hadoop由于文件格式并非 为特定目的而建,因此序列化和反 ...

  8. 《Object Storage on CRAQ: High-throughput chain replication for read-mostly workloads》论文总结

    CRAQ 论文总结 说明:本文为论文 <Object Storage on CRAQ: High-throughput chain replication for read-mostly wor ...

  9. PayPal高级工程总监:读完这100篇论文 就能成大数据高手(附论文下载)

    100 open source Big Data architecture papers for data professionals. 读完这100篇论文 就能成大数据高手 作者 白宁超 2016年 ...

  10. 近年Recsys论文

    2015年~2017年SIGIR,SIGKDD,ICML三大会议的Recsys论文: [转载请注明出处:https://www.cnblogs.com/shenxiaolin/p/8321722.ht ...

随机推荐

  1. 数电第8周周结_by_yc

    基本知识: 1.有限状态机的分类: Moore型:输出仅与电路的状态有关: Mealy型:输出与当前电路状态和当前电路输入有关. 2.有限状态机的描述方法: 状态转换图:节点:状态(Moore输出): ...

  2. JavaEE Day05 JDBC(用Java语言操作数据库)

    今日内容 基本概念 快速入门 对JDBC中各个接口和类的详解 一.基本概念 1.概念:Java Database Connectivity:Java数据库连接,Java语言操作数据库 2.本质:官方( ...

  3. 【Spark】Day05-内核解析:组件、流程、部署、运行模式、通讯架构、任务调度(Stage、task级)、两种Shuffle机制、内存管理、核心组件

    一.内核概述 内核:核心组件的运行机制.任务调度.内存管理.运行原理 1.核心组件 (1)Driver驱动器节点:执行main方法,将程序转化为作业job,在executor中调度任务task,跟踪并 ...

  4. DHorse日志收集原理

    实现原理 基于k8s的日志收集主要有两种方案,一是使用daemoset,另一种是基于sidecar.两种方式各有优缺点,目前DHorse是基于daemoset实现的.如图1所示: 图1 在每个k8s集 ...

  5. 可视化编排的数据集成和分发开源框架Nifi轻松入门-上

    @ 目录 概述 定义 dataflow面临挑战 特性 核心概念 架构 高级概述 安装 部署 常见处理器 入门示例 概述 定义 Nifi 官网地址 https://nifi.apache.org/ Ni ...

  6. 【深入浅出Spring原理及实战】「源码原理实战」从底层角度去分析研究PropertySourcesPlaceholderConfigurer的原理及实战注入机制

    Spring提供配置解析功能 主要有一下xml文件占位符解析和Java的属性@Value的占位符解析配置这两种场景进行分析和实现解析,如下面两种案例. xml文件的占位符解析配置 <bean i ...

  7. SQL 之 SELECT语句

    1.展示所有列语法 select * from table; #table表示表名 示例: select * from a 2.展示指定列语法 select column1, column2, ... ...

  8. python中使用pip 安装第三方库报错归类及解决方式

    1.  离线安装virtualenv报错,安装命令:python setup.py install 解决方式:升级setuptools 2.  安装第三方库时安装失败,安装命令:pip install ...

  9. 【转载】github.com访问慢解决办法

    打开网站 IPAddress.com ,找到页面中下方的"IP Address Tools – Quick Links" 分别输入github.global.ssl.fastly. ...

  10. 简述HashSet的扩容机制以及我们在重写equals()的时候为何会重写hashcode()

    简述HashSet的扩容机制以及我们在重写equals()的时候为何会重写hashcode()   摘要:在背面试知识点的时候存在这样一条著名的面试题:我们重写equals()的时候为什么要重写has ...