首先TF-IDF 全称:term frequency–inverse document frequency,是一种用于信息检索与数据挖掘的常用加权技术。

TF是词频(Term Frequency),IDF是逆文本频率指数(Inverse Document Frequency)。

上面是百度的结果

我的理解就是用来筛选特征的,看看那些词用来当特征比较好。

词频(TF):就是一个词在一个文本里出现的次数除以文本词数。(文本内词出现次数 /文本内词总数)

逆文本频率指数(IDF):就是总文本数除以包含这个词的文本数的10的对数,有点饶哈哈。lg(总文本数/包含这个词的文本数)

TF-IDF = TF*IDF

先看下调用的:

# CountVectorizer会将文本中的词语转换为词频矩阵
vectorizer = CountVectorizer(max_features=1200, min_df=12)

# TfidfTransformer用于统计vectorizer中每个词语的TF-IDF值
tf_idf_transformer = TfidfTransformer()

# vectorizer.fit_transform()计算每个词出现的次数
# tf_idf_transformer.fit_transform将词频矩阵统计成TF-IDF值
tf_idf = tf_idf_transformer.fit_transform(vectorizer.fit_transform(train_features['features'].values.astype('U'))) # .values.astype('U')

x_train_weight = tf_idf.toarray() # 训练集TF-IDF权重矩阵

然后是我手写的:
参数格式是,[词1 词2 词3,词1 词2 词3,词1 词2 词3]
一个字符串列表,词与词间用空格隔开。
 print("-"*5+"构建tf-idf权重矩阵中"+"-"*5)
def get_tf_idf(list_words):
# 构建词典
wordSet = list(set(" ".join(list_words).split()))

# 统计词数
def count_(words):
wordDict = dict.fromkeys(wordSet, 0)
for i in words:
wordDict[i] += 1
return wordDict

# 计算tf
def computeTF(words):
cnt_dic = count_(words)
tfDict = {}
nbowCount = len(words)

for word, count in cnt_dic.items():
tfDict[word] = count / nbowCount

return tfDict

# 计算idf
def get_idf():
filecont = dict.fromkeys(wordSet, 0)
for i in wordSet:
for j in list_words:
if i in j.split():
filecont[i] += 1
idfDict = dict.fromkeys(wordSet, 0)
le = len(list_words)
for word, cont in filecont.items():
idfDict[word] = math.log10(le/cont+1)
return idfDict

# 计算每个词的TF*IDF的值
def get_tf_idf(list_words):
idf_dic = get_idf()
ret = []
for words in list_words:
tf_dic = computeTF(words.split())
tf_idf_dic = {}
temp = []
for word, tf in tf_dic.items():
idf = idf_dic[word]
tf_idf = tf * math.log(len(list_words) / (idf+1))
tf_idf_dic[word] = tf_idf

for word in wordSet:
temp.append(tf_idf_dic.get(word, 0))
ret.append(temp)
return ret
return np.array(get_tf_idf(list_words))
tf-idf矩阵:
word_tf_idf = get_tf_idf(features)

慢的飞起,哈哈哈哈。

TF-IDF笔记(直接调用函数、手写)的更多相关文章

  1. JDBC学习笔记(10)——调用函数&存储过程

    如何使用JDBC调用存储在数据库中的函数或存储过程: * 1.通过COnnection对象的prepareCall()方法创建一个CallableStatement *    对象的实例,在使用Con ...

  2. SVM学习笔记(二)----手写数字识别

    引言 上一篇博客整理了一下SVM分类算法的基本理论问题,它分类的基本思想是利用最大间隔进行分类,处理非线性问题是通过核函数将特征向量映射到高维空间,从而变成线性可分的,但是运算却是在低维空间运行的.考 ...

  3. 【转】JDBC学习笔记(10)——调用函数&存储过程

    转自:http://www.cnblogs.com/ysw-go/ 如何使用JDBC调用存储在数据库中的函数或存储过程: * 1.通过COnnection对象的prepareCall()方法创建一个C ...

  4. 5 TensorFlow入门笔记之RNN实现手写数字识别

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  5. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  6. 10分钟教你用python 30行代码搞定简单手写识别!

    欲直接下载代码文件,关注我们的公众号哦!查看历史消息即可! 手写笔记还是电子笔记好呢? 毕业季刚结束,眼瞅着2018级小萌新马上就要来了,老腊肉小编为了咱学弟学妹们的学习,绞尽脑汁准备编一套大学秘籍, ...

  7. 一套手写ajax加一般处理程序的增删查改

    倾述下感受:8天16次驳回.这个惨不忍睹. 好了不说了,说多了都是泪. 直接上代码 : 这个里面的字段我是用动软生成的,感觉自己手写哪些字段太浪费时间了,说多了都是泪 ajax.model层的代码: ...

  8. python笔记六(函数的参数、返回值)

    一 调用函数 在写函数之前,我们先尝试调用现有的函数 >>> abs(-9) 9 除此之外,还有我们之前使用的len()等.可以用于数据类型转换的 int() float() str ...

  9. 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)

    上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...

随机推荐

  1. bzoj2084/luoguP3501 [Poi2010]Antisymmetry(回文自动机+dp)

    bzoj2084/luoguP3501 [Poi2010]Antisymmetry(回文自动机+dp) bzoj Luogu 对于一个01字符串,如果将这个字符串0和1取反后,再将整个串反过来和原串一 ...

  2. Bigdecimal 比较问题

  3. SSL的作用?

    SSL能使用户/服务器应用之间的通信不被攻击者窃听,并且始终对服务器进行认证,还可选择对用户进行认证.SSL协议要求建立在可靠的传输层协议(TCP)之上.SSL协议的优势在于它是与应用层协议独立无关的 ...

  4. springboot远程debug调试

    案例代码: https://www.cnblogs.com/youxiu326/p/sb_promotion.html 1.首先去编辑器打开项目    2.打开Edit Configurations ...

  5. Netty学习摘记 —— 心跳机制 / 基于分隔符和长度的协议

    本文参考 本篇文章是对<Netty In Action>一书第十一章"预置的ChannelHandler和编解码器"的学习摘记,主要内容为通过 SSL/TLS 保护 N ...

  6. Netty学习摘记 —— ByteBuf详解

    本文参考 本篇文章是对<Netty In Action>一书第五章"ByteBuf"的学习摘记,主要内容为JDK 的ByteBuffer替代品ByteBuf的优越性 你 ...

  7. 全方位讲解 Nebula Graph 索引原理和使用

    本文首发于 Nebula Graph Community 公众号 index not found?找不到索引?为什么我要创建 Nebula Graph 索引?什么时候要用到 Nebula Graph ...

  8. String工具类之“前缀比较”StringUtils.startsWith和StringUtils.startsWithIgnoreCase

    (1)字符串以prefix为前缀(区分大小写) StringUtils.startsWith(被比较的字符串,比较字符串) 总结: 根据下面代码发现,上面的例子有部分时错误的,有可能是因为思维原因,他 ...

  9. 「入门篇」初识JVM (下下) - GC

    垃圾收集主要是针对堆和方法区进行:程序计数器.虚拟机栈和本地方法栈这三个区域属于线程私有的,只存在于> 线程的生命周期内,线程结束之后也会消失,因此不需要对这三个区域进行垃圾回收. GC - J ...

  10. 切图崽的自我修养-[ES6] 迭代器Iterator浅析

    Iterator 这真是毅种循环 Iterator不是array,也不是set,不是map, 它不是一个实体,而是一种访问机制,是一个用来访问某个对象的接口规范,为各种不同的数据结构提供统一的访问机制 ...