import numpy as np
#(1)零均值化
def zeroMean(dataMat):
meanVal=np.mean(dataMat,axis=0)
newData =dataMat -meanVal
return newData, meanVal
#3、选择主成分个数
def percentage2n(eigVals,percentage):
sortArray=np.sort(eigVals) #升序
sortArray=sortArray[-1::-1] #逆转,即降序
arraySum=sum(sortArray)
tmpSum=0
num=0
for i in sortArray:
tmpSum+=i
num+=1
if tmpSum>=arraySum*percentage:
return num
#pca算法
def pca(dataMat,percentage=0.99):
# (1)零均值化
newData, meanVal = zeroMean(dataMat)
# 求协方差矩阵
covMat = np.cov(newData, rowvar=0)
# (3)求特征值、特征矩阵
eigVals, eigVects = np.linalg.eig(np.mat(covMat))
n =percentage2n(eigVals,percentage)
# eigVals 特征值和eigVects特征向量
eigValIndice = np.argsort(eigVals)
#所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】
n_eigValIndice = eigValIndice[-1:-(n + 1):-1] # 最大的n个特征值的下标
n_eigVect = eigVects[:, n_eigValIndice] # 最大的n个特征值对应的特征向量
lowDDataMat = newData * n_eigVect # 低维特征空间的数据
reconMat = (lowDDataMat * n_eigVect.T) + meanVal # 重构数据
return lowDDataMat, reconMat
def main():
data = [[10.2352,11.322],
[10.1223,11.811],
[9.1902,8.9049],
[9.3064,9.8474],
[8.3301,8.3404],
[10.1528,10.1235],
[10.4085,10.822],
[9.0036,10.0392],
[9.5349,10.097],
[9.4982,10.8254]]
lowDDataMat, reconMat = pca(data,0.9)
print(lowDDataMat)
if __name__=="__main__":
main()
 

机器学习之主成分分析(PCA)的更多相关文章

  1. 机器学习之主成分分析PCA原理笔记

    1.    相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的 ...

  2. [机器学习笔记]主成分分析PCA简介及其python实现

    主成分分析(principal component analysis)是一种常见的数据降维方法,其目的是在“信息”损失较小的前提下,将高维的数据转换到低维,从而减小计算量. PCA的本质就是找一些投影 ...

  3. 【机器学习】--主成分分析PCA降维从初识到应用

    一.前述 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. ...

  4. 【机器学习】主成分分析PCA(Principal components analysis)

    1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到 ...

  5. 机器学习入门-主成分分析(PCA)

    主成分分析: 用途:降维中最常用的一种方法 目标:提取有用的信息(基于方差的大小) 存在的问题:降维后的数据将失去原本的数据意义 向量的内积:A*B = |A|*|B|*cos(a) 如果|B| = ...

  6. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  7. 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射

    机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...

  8. 机器学习课程-第8周-降维(Dimensionality Reduction)—主成分分析(PCA)

    1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快 ...

  9. 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】

    前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...

  10. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

随机推荐

  1. 关于Java的=赋值操作和方法传递对象时的引用

    原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11405920.html 下面通过一段代码和debug结果来展示Java中=操作的赋值改变过程. ...

  2. 大前端JS篇之搞懂【Set】

    我认为前端生态很大,犹如一片汪洋大海,很难短时间内窥其全貌,在这里我们不谈其他,只聊聊 Set Set是 es6 新提出的一个对象,也是一种数据结构,为什么es6要提出这样一个新对象呢,无非就是丰富j ...

  3. dfs+search

    1.数的划分 点击查看搜索 #include<iostream> #include<cstdio> #include<cmath> #include<algo ...

  4. 使用代码绑定 DataGridView 控件用于程序界面显示表格

    需求 软件界面需要使用表格,对数据进行显示.交互,这是一个非常通用的需求. 实现方法 DataGridView介绍 参考 https://docs.microsoft.com/en-us/dotnet ...

  5. JDK线程池

    简介 多线程技术主要解决处理器单元内多个线程执行的问题,它可以显著减少处理器单元的闲置时间,增加处理器单元的吞吐能力,但频繁的创建线程的开销是很大的,那么如何来减少这部分的开销了,那么就要考虑使用线程 ...

  6. Linux-CPU优化之上下文切换

    为什么大量进程(通常进程数大于CPU个数)的运行会导致CPU长时间处于等待时间而导致平均负债率过高呢?没有使用CPU且无不可中断的进程,这就涉及到了上下文切换. 巧妙地利用了时间片轮转的方式, CPU ...

  7. CentOS7防火墙firewall

    一.Firewall 1. 从CentOS7开始,默认使用firewall来配置防火墙,没有安装iptables(旧版默认安装). 2. firewall的配置文件是以xml的格式,存储在 /usr/ ...

  8. jenkins发布代码选择不同分支

    jenkins上传代码分支以前都是用变量的方式,手动实现.过程就像这样 构建时候的界面就像下面这样,需要手动输入分支版本. 或者有固定的上线分支,用参数化构建 选项参数 来选择.总之这些方法比较传统, ...

  9. Java多线程Thread类了解和使用

    创建线程的两种方式 extends Thread 类 public class WelComeApp { public static void main(String[] args) { Welcom ...

  10. [故障]ceph存储池权限修改错误,导致存储池的业务hang住

    描述: 记录一次重大事故:根据IaaS资源业务要求,需要增加某些功能,所以要修改部署代码.修改后重推部署代码,检查发现没有什么异常. 但是一段时间后就收到用户的报障反馈,接连一个电话.2个电话.3个电 ...