机器学习之主成分分析(PCA)
import numpy as np
#(1)零均值化
def zeroMean(dataMat):
meanVal=np.mean(dataMat,axis=0)
newData =dataMat -meanVal
return newData, meanVal
#3、选择主成分个数
def percentage2n(eigVals,percentage):
sortArray=np.sort(eigVals) #升序
sortArray=sortArray[-1::-1] #逆转,即降序
arraySum=sum(sortArray)
tmpSum=0
num=0
for i in sortArray:
tmpSum+=i
num+=1
if tmpSum>=arraySum*percentage:
return num
#pca算法
def pca(dataMat,percentage=0.99):
# (1)零均值化
newData, meanVal = zeroMean(dataMat)
# 求协方差矩阵
covMat = np.cov(newData, rowvar=0)
# (3)求特征值、特征矩阵
eigVals, eigVects = np.linalg.eig(np.mat(covMat))
n =percentage2n(eigVals,percentage)
# eigVals 特征值和eigVects特征向量
eigValIndice = np.argsort(eigVals)
#所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】
n_eigValIndice = eigValIndice[-1:-(n + 1):-1] # 最大的n个特征值的下标
n_eigVect = eigVects[:, n_eigValIndice] # 最大的n个特征值对应的特征向量
lowDDataMat = newData * n_eigVect # 低维特征空间的数据
reconMat = (lowDDataMat * n_eigVect.T) + meanVal # 重构数据
return lowDDataMat, reconMat
def main():
data = [[10.2352,11.322],
[10.1223,11.811],
[9.1902,8.9049],
[9.3064,9.8474],
[8.3301,8.3404],
[10.1528,10.1235],
[10.4085,10.822],
[9.0036,10.0392],
[9.5349,10.097],
[9.4982,10.8254]]
lowDDataMat, reconMat = pca(data,0.9)
print(lowDDataMat)
if __name__=="__main__":
main()
机器学习之主成分分析(PCA)的更多相关文章
- 机器学习之主成分分析PCA原理笔记
1. 相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的 ...
- [机器学习笔记]主成分分析PCA简介及其python实现
主成分分析(principal component analysis)是一种常见的数据降维方法,其目的是在“信息”损失较小的前提下,将高维的数据转换到低维,从而减小计算量. PCA的本质就是找一些投影 ...
- 【机器学习】--主成分分析PCA降维从初识到应用
一.前述 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. ...
- 【机器学习】主成分分析PCA(Principal components analysis)
1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到 ...
- 机器学习入门-主成分分析(PCA)
主成分分析: 用途:降维中最常用的一种方法 目标:提取有用的信息(基于方差的大小) 存在的问题:降维后的数据将失去原本的数据意义 向量的内积:A*B = |A|*|B|*cos(a) 如果|B| = ...
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...
- 机器学习课程-第8周-降维(Dimensionality Reduction)—主成分分析(PCA)
1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快 ...
- 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】
前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...
- 一步步教你轻松学主成分分析PCA降维算法
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...
随机推荐
- MySQL 数据库SQL语句——高阶版本2
MySQL 数据库SQL语句--高阶版本2 实验准备 数据库表配置: mysql -uroot -p show databases; create database train_ticket; use ...
- Ansible之playbook剧本
Ansible之playbook剧本 目录 Ansible之playbook剧本 1. playbook的组成 2. 剧本示例test1 2.1 剧本制作 2.2 准备http.conf 2.3 运行 ...
- 5、架构--Nginx、搭建超级玛丽游戏
笔记 1.晨考 1.NFS共享文件步骤 - 服务端 [root@backup ~]# yum install nfs-utils rpcbind -y [root@backup ~]# mkdir / ...
- Solution -「Gym 102759G」LCS 8
\(\mathcal{Description}\) Link. 给定 \(m\),和长度为 \(n\),字符集为大写字母的字符串 \(s\),求字符集相同且等长的字符串 \(t\) 的数量,使 ...
- Solution -「LOCAL」「cov. HDU 6864」找朋友
\(\mathcal{Description}\) Link.(几乎一致) 给定 \(n\) 个点 \(m\) 条边的仙人掌和起点 \(s\),边长度均为 \(1\).令 \(d(u)\) 表 ...
- php spl_autoload_register 实现自动加载
spl_autoload_register (PHP 5 >= 5.1.2, PHP 7) spl_autoload_register - 注册给定的函数作为 __autoload 的实现 语法 ...
- python对文件夹内文件去重
昨天无聊写了一个百度图片爬虫,测试了一下搜索"斗图".一下给我下了3000多个图片,关键是有一半以上重复的.what a fuck program ! 好吧,今天写一个文件去重功能 ...
- Python中模块import的使用案例
1 import test # 导入test模块 2 3 print(test.a) # 使用"模块.变量"调用模块中的变量 4 5 test.hi() # 使用"模块. ...
- CVE-2017-0213漏洞复现
CVE-2017-0213漏洞形成的原因 类型混淆的漏洞通常可以通过内存损坏的方式来进行利用.然而漏洞发现者在利用时,并未采用内存损坏的方式来进行漏洞利用.按照漏洞发现者的说法,内存损坏的利用方式需要 ...
- ctf平台
CTF靶场 蓝鲸安全:http://whalectf.xin bugku:https://ctf.bugku.com XCTF攻防世界:https://adworld.xctf.org.cn/ i春秋 ...