题目看似与线性方程组无关,但可以通过建模转化为线性方程组的问题。

对于一块砖,刷两次是没有必要的,我们令x=1表示刷了一次,x=0没有刷,一共有n*n个,所以相当于有n*n个未知量x。

定义aij表示i和j的关系,是邻居则为1,否则是0;我们又用0表示黄色,1表示白色,一个方格最后的颜色,取决于它的初始颜色和所有他的邻居格子的异或操作情况。

就可以得到n*n个方程,a为系数,x为变量,每个方程的含义就是代表每个格子与邻居格子异或之后为0(黄色)。

x=1,表示这个格子被刷了一次,统计所有x=1的数量就是答案。

 1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 using namespace std;
5 int a[230][230],d[5][2]={{0,0},{-1,0},{1,0},{0,-1},{0,1}};
6 int T,n;
7
8 bool gauss(){
9 int r,c;
10 for(r=0,c=0;c<n*n;c++){
11 int t=r;
12 for(int i=r;i<n*n;i++)
13 if(a[i][c]){t=i;break;}
14 if(!a[t][c]) continue;
15 for(int i=c;i<=n*n;i++) swap(a[t][i],a[r][i]);
16 for(int i=r+1;i<n*n;i++)
17 if(a[i][c])
18 for(int j=c;j<=n*n;j++)
19 a[i][j]^=a[r][j];
20 r++;
21 }
22 for(int i=r;i<n*n;i++)
23 if(a[i][n*n]) return false;
24 for(int i=n*n-1;i>=0;i--)
25 for(int j=i+1;j<n*n;j++)
26 a[i][n*n]^=a[i][j]&a[j][n*n];
27 return true;
28 }
29
30 int main(){
31 char c;
32 scanf("%d",&T);
33 while(T--){
34 scanf("%d",&n);
35 memset(a,0,sizeof(a));
36 for(int i=0;i<n;i++)
37 for(int j=0;j<n;j++)
38 for(int k=0;k<5;k++){
39 int x=i+d[k][0],y=j+d[k][1];
40 if(x>=0&&y>=0&&x<n&&y<n)
41 a[i*n+j][x*n+y]=1;
42 }
43 for(int i=0;i<n*n;i++){
44 scanf(" %c",&c);
45 if(c=='w') a[i][n*n]=1;
46 if(c=='y') a[i][n*n]=0;
47 }
48 int ans=gauss();
49 if(!ans) printf("inf\n");
50 else{
51 int ans=0;
52 for(int i=0;i<n*n;i++)
53 if(a[i][n*n]==1) ans++;
54 printf("%d\n",ans);
55 }
56 }
57 }

POJ1681 Painter's Problem(高斯消元)的更多相关文章

  1. POJ 1681 Painter's Problem (高斯消元)

    题目链接 题意:有一面墙每个格子有黄白两种颜色,刷墙每次刷一格会将上下左右中五个格子变色,求最少的刷方法使得所有的格子都变成yellow. 题解:通过打表我们可以得知4*4的一共有4个自由变元,那么我 ...

  2. POJ 1681 Painter's Problem [高斯消元XOR]

    同上题 需要判断无解 需要求最小按几次,正确做法是枚举自由元的所有取值来遍历变量的所有取值取合法的最小值,然而听说数据太弱自由元全0就可以就水过去吧.... #include <iostream ...

  3. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  4. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  5. POJ 1681 Painter's Problem(高斯消元+枚举自由变元)

    http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...

  6. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  7. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  8. 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

    最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...

  9. Problem A: Apple(高斯消元)

    可以发现具有非常多的方程, 然后高斯消元就能85分 然而我们发现这些方程组成了一些环, 我们仅仅设出一部分变量即可获得N个方程, 就可以A了 trick 合并方程 #include <cstdi ...

  10. HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...

随机推荐

  1. 题解 P4999 【烦人的数学作业】

    数位 dp. 设 \(dp_{q,i}\)(\(i\in\{0,1,2,3,4,5,6,7,8,9\}\))为 \(1\sim q\) 中 \(i\) 出现的次数,\(1\sim q\) 的数字和显然 ...

  2. java反射的初理解

    反射 获取类的方法: Class<?> aClass1 = Class.forName("TestDemo.refection.User");//通过类路径获取 Cla ...

  3. MySQL之COUNT(*)性能到底如何?

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. GreatSQL是MySQL的国产分支版本,使用上与MySQL一致. 前言 在实际开发过程中,统计一个表的数据量是经常遇到 ...

  4. Python之验证码识别功能

    Python之pytesseract 识别验证码 1.验证码来一个 2.适合什么样的验证码呢? 只能识别简单.静态.无重叠.只有数字字母的验证码 3.实际应用:模拟人工登录.页面内容识别.爬虫抓取信息 ...

  5. Spring mvc源码分析系列--前言

    Spring mvc源码分析系列--前言 前言 距离上次写文章已经过去接近两个月了,Spring mvc系列其实一直都想写,但是却不知道如何下笔,原因有如下几点: 现在项目开发前后端分离的趋势不可阻挡 ...

  6. [CF1498D] Bananas in a Microwave (DP)

    题面&翻译 题解 虽然 m m m 很大,但是 n n n 很小,因此题目允许我们在 O ( n m ) O(nm) O(nm) 以内解决这道题. 定义一个 dp[i][j]=0/1 ? 如果 ...

  7. Qt QBarSeries简易柱状图教程

    博客园最强Qt QBarSeries简易柱状图教程 前情提要 每个人的绘图需求不同,此篇教程也是根据需求来改的.我的需求大概如下所示. 通过信号槽的方式接收signals来刷新柱状图,所以每次触发信号 ...

  8. 如何做raid级别磁盘(rhel和centos系统皆可)

    添加磁盘,自己需要多少磁盘即可添加多少数量 此处只添加了三块200MB大小的磁盘 此处三块磁盘,只有两块做raid,一块与raid磁盘为实验测读写速率,不测速率可三块都做raid. 进入虚拟机给三个磁 ...

  9. spark 执行spark-example

    1. 找到CDH 安装spark的目录 执行 which spark-shell /usr/bin/spark-shell 执行 ll /usr/bin/spark-shell lrwxrwxrwx ...

  10. LibTorch 自动微分

    得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导. 进行自动微分运算需要调用函数 torch::autograd::grad( outputs, ...