洛谷P2627 [USACO11OPEN]Mowing the Lawn G (单调队列优化DP)
一道单调队列优化DP的入门题。
f[i]表示到第i头牛时获得的最大效率。
状态转移方程:f[i]=max(f[j-1]-sum[j])+sum[i] ,i-k<=j<=i。j的意义表示断点,因为不能连续安排超过k只牛,肯定要在中间断开一处。
max中f[j-1]-sum[j]只和j相关,我们可以对其做递减单调队列,最后队头就是最大值max。
1 #include<bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int N=1e5+10;
5 ll n,m,sum[N],f[N],d[N];
6 int q[N],head=0,tail=1;
7 ll que(int i){
8 d[i]=f[i-1]-sum[i];
9 while(head<=tail&&d[q[tail]]<d[i]) tail--;//将d[i]插入队列中
10 q[++tail]=i;
11 while(head<=tail&&q[head]<i-m) head++;
12 return d[q[head]];
13 }
14
15 int main(){
16 scanf("%lld%lld",&n,&m);
17 for(int i=1;i<=n;i++) scanf("%lld",&sum[i]),sum[i]+=sum[i-1];
18 for(int i=1;i<=n;i++) f[i]=que(i)+sum[i];
19 printf("%lld",f[n]);
20 }
洛谷P2627 [USACO11OPEN]Mowing the Lawn G (单调队列优化DP)的更多相关文章
- 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- P2034 选择数字 / P2627 [USACO11OPEN]Mowing the Lawn G
Link 题目描述 给定一行 \(n\) 个非负整数 \(a[1]..a[n]\) .现在你可以选择其中若干个数,但不能有超过 \(k\) 个连续的数字被选择.你的任务是使得选出的数字的和最大. 输入 ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- 洛谷 P3957 跳房子 —— 二分答案+单调队列优化DP
题目:https://www.luogu.org/problemnew/show/P3957 先二分一个 g,然后判断: 由于转移的范围是一个区间,也就是滑动窗口,所以单调队列优化: 可以先令队尾为 ...
- 【洛谷3648/BZOJ3675】[APIO2014]序列分割(斜率优化DP)
题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一 ...
- 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)
洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...
- 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)
qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...
- 洛谷 P6775 - [NOI2020] 制作菜品(找性质+bitset 优化 dp)
题面传送门 好久没写过题解了,感觉几天没写手都生疏了 首先这种题目直接做肯定是有些困难的,不过注意到题目中有个奇奇怪怪的条件叫 \(m\ge n-2\),我们不妨从此入手解决这道题. 我们先来探究 \ ...
- 2018.09.26洛谷P3957 跳房子(二分+单调队列优化dp)
传送门 表示去年考普及组的时候失了智,现在看来并不是很难啊. 直接二分答案然后单调队列优化dp检验就行了. 注意入队和出队的条件. 代码: #include<bits/stdc++.h> ...
随机推荐
- Object类的toString方法和equals方法
Object类 概述 java.long.Object 类是java语言中的根类,即所有类的父类.它中描述的所有方法子类都可以使用.在对象实例化的时候,最终的父类就是Object 类Object是类层 ...
- Javaweb-JSP详解
一.什么是JSP Java Server Pages:Java服务器端页面,和Servlet一样,用于动态web技术 最大的特点: 写JSP就像在写HTML 区别: HTML只给用户提供静态的数据 J ...
- YII服务定位器依赖注入
<?php /** * Created by PhpStorm. * Date: 2016/5/25 * Time: 18:33 * 服务定位器依赖注入 */ namespace fronten ...
- P4983忘情
今天挺开心的\(\sim\),省选加油\(!\) \(P4893\)忘情 我能说今晚我才真正学会\(wqs\)和斜率优化吗\(?\) 恰好选几个,必然需要\(wqs\)二分一下 那么考虑不考虑次数情况 ...
- Python 懂车帝综合口碑数据
本文所有教程及源码.软件仅为技术研究.不涉及计算机信息系统功能的删除.修改.增加.干扰,更不会影响计算机信息系统的正常运行.不得将代码用于非法用途,如侵立删! Python 懂车帝综合口碑数据 需求 ...
- 使用.NET简单实现一个Redis的高性能克隆版(七-完结)
译者注 该原文是Ayende Rahien大佬业余自己在使用C# 和 .NET构建一个简单.高性能兼容Redis协议的数据库的经历. 首先这个"Redis"是非常简单的实现,但是他 ...
- Angular 新建项目错误:The Schematic workflow failed. See above
记录踩坑填坑,有不正之处请指出 错误 解决方法1 npm config set registry https://registry.npmjs.org/ 也可使用淘宝镜像 npm config set ...
- Spring源码 03 IOC原理
参考源 https://www.bilibili.com/video/BV1tR4y1F75R?spm_id_from=333.337.search-card.all.click https://ww ...
- Git 01 介绍
参考源 https://www.bilibili.com/video/BV1FE411P7B3?spm_id_from=333.999.0.0 版本 本文章基于 Git 2.35.1.2 版本控制 版 ...
- Taurus.MVC 微服务框架 入门开发教程:项目部署:1、微服务应用程序常规部署实现多开,节点扩容。
系列目录: 本系列分为项目集成.项目部署.架构演进三个方向,后续会根据情况调整文章目录. 本系列第一篇:Taurus.MVC V3.0.3 微服务开源框架发布:让.NET 架构在大并发的演进过程更简单 ...