什么鬼双倍经验题???


Sol

考虑在第\(k\)次摸到\(y\)的概率

  • 如果上次摸到\(y\),目前有\(sum\)个球,\(y\)有\(a[y]\)个,那么概率就是\(\frac{a[y]+d}{sum+d}*\frac{a[y]}{sum}\)
  • 如果上次没摸到\(y\),那么概率就是\(\frac{a[y]}{sum+d}*\frac{sum-a[y]}{sum}\)

合在一起就是\(\frac{a[y]}{sum}\)

那么就是直接这样写

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
const int _(2005);
typedef long long ll; IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int t, n, d, a[_], sum;
ll p1 = 1, p2 = 1; IL ll Gcd(RG ll x, RG ll y){
return !y ? x : Gcd(y, x % y);
} int main(RG int argc, RG char* argv[]){
t = Input(), n = Input(), d = Input();
for(RG int i = 1; i <= t; ++i) a[i] = Input(), sum += a[i];
for(RG int i = 1, y; i <= n; ++i){
Input(), y = Input();
p1 *= a[y], p2 *= sum;
sum += d, a[y] += d;
}
RG ll d = Gcd(p1, p2);
printf("%lld/%lld\n", p1 / d, p2 / d);
return 0;
}

然后显然要高精度,为防止高精度\(Gcd\)

所以可以直接分解质因数,然后乘法

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
const int _(2005);
const int __(2e5 + 1);
const int SZ(1e4);
typedef long long ll; IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int t, n, d, a[_], sum;
int prime[__], num, isprime[__];
struct Int{
int fac[__], len, a[__]; IL void Add(RG int x){
for(RG int i = 1; i <= num && prime[i] <= x; ++i)
while(!(x % prime[i])) x /= prime[i], ++fac[i];
} IL void Mul(RG int x){
RG int ud = 0;
for(RG int i = 1; i <= len; ++i)
a[i] = a[i] * x + ud, ud = a[i] / SZ, a[i] %= SZ;
while(ud) a[++len] = ud % SZ, ud /= SZ;
} IL void Print(){
printf("%d", a[len]);
for(RG int i = len - 1; i; --i) printf("%04d", a[i]);
}
} P1, P2; IL void Sieve(){
isprime[1] = 1;
for(RG int i = 2; i < __; ++i){
if(!isprime[i]) prime[++num] = i;
for(RG int j = 1; j <= num && i * prime[j] < __; ++j){
isprime[i * prime[j]] = 1;
if(!(i % prime[j])) break;
}
}
} int main(RG int argc, RG char* argv[]){
Sieve(), P1.len = P2.len = P1.a[1] = P2.a[1] = 1;
t = Input(), n = Input(), d = Input();
for(RG int i = 1; i <= t; ++i) a[i] = Input(), sum += a[i];
for(RG int i = 1, y; i <= n; ++i){
Input(), y = Input();
if(!a[y]) return puts("0/1"), 0;
P1.Add(a[y]), P2.Add(sum);
sum += d, a[y] += d;
}
for(RG int i = 1; i <= num; ++i){
if(P2.fac[i] >= P1.fac[i]) P2.fac[i] -= P1.fac[i], P1.fac[i] = 0;
else P1.fac[i] -= P2.fac[i], P2.fac[i] = 0;
for(RG int j = 1; j <= P1.fac[i]; ++j) P1.Mul(prime[i]);
for(RG int j = 1; j <= P2.fac[i]; ++j) P2.Mul(prime[i]);
}
P1.Print(), putchar('/'), P2.Print();
return puts(""), 0;
}

Bzoj1498&1416: [NOI2006]神奇的口袋的更多相关文章

  1. BZOJ 1416: [NOI2006]神奇的口袋( 高精度 )

    把x1~xn当成是1~n, 答案是不会变的. 然后直接模拟就行了...... P.S 双倍经验... BZOJ1416 && BZOJ1498 -------------------- ...

  2. ●BZOJ 1416 [NOI2006]神奇的口袋

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1416题解: Pòlya瓦罐模型: 给定罐子里每种颜色的球的个数A[i],按题目要求随机操作若 ...

  3. 【BZOJ1416/1498】【NOI2006】神奇的口袋(数论,概率)

    [BZOJ1416/1498][NOI2006]神奇的口袋(数论,概率) 题面 BZOJ1416 BZOJ1498 洛谷 题面都是图片形式是什么鬼.. 题解 考虑以下性质 1.\(x[1],x[2]. ...

  4. 神奇的口袋(dp)

    有一个神奇的口袋,总的容积是40,用这个口袋可以变出一 些物品,这些物品的总体积必须是40. John现在有n(1≤n ≤ 20)个想要得到的物品,每个物品 的体积分别是a1,a2……an.John可 ...

  5. [codeup] 2044 神奇的口袋

    题目描述 有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40.John现在有n个想要得到的物品,每个物品的体积分别是a1,a2--an.John可以从这些物品中选 ...

  6. dp 神奇的口袋

    有一个神奇的口袋,总的容积是40,用这个口袋可以变出一 些物品,这些物品的总体积必须是40.  John现在有n(1≤n ≤ 20)个想要得到的物品,每个物品 的体积分别是a1,a2--an.Joh ...

  7. 九度OJ 1114:神奇的口袋 (DFS、DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:948 解决:554 题目描述: 有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40.John现在有n个 ...

  8. 九度oj 题目1114:神奇的口袋

    题目描述: 有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40.John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an.John可以从这些物品中 ...

  9. 百练2755:神奇的口袋(简单dp)

    描述有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40.John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an.John可以从这些物品中选择一些 ...

随机推荐

  1. PHP中SimpleXMLElement对象字符编码

    最近在使用SimpleXMLElement来生成和解析XML. 由于我们使用PHP开发的这边使用UTF-8编码,而对方使用GBK编码,因此就遇到了中文字符编码问题. 后来发现,XML内部的编码与其头 ...

  2. 2016级算法第二次上机-A.画个圈圈诅咒你

    890 画个圈圈诅咒你 思路 简单题.题目中的圆并没有什么实际作用,简化成线段重合问题会更好理解些. 暴力解法:使用双重for循环会T到想哭,记住最直接的方法一般是过不了题的. 解法一:二分查找.空间 ...

  3. 1.ajax简单实现异步交互

    效果:点击获取信息 testAjax.jsp: <%@ page language="java" contentType="text/html; charset=U ...

  4. 搭建自己的pypi私有源服务器

    最简单的方式: pypiserver – minimal pypi server, easy to install & use 1.安装pypiserver:pip install pypis ...

  5. 洛谷 P4234 最小差值生成树(LCT)

    题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...

  6. json处理工具类

    需要的jar包 <!-- Jackson Json处理工具包 --><dependency><groupId>com.fasterxml.jackson.core& ...

  7. Android的崩溃类型总结

    看了篇腾讯的沙龙分享,觉得很不错,在这里分享给大家 crash的大致划分:

  8. 'node' 不是内部或外部命令,也不是可运行的程序或批处理文件

    状况:安装完nodejs之后,命令行输入node -v, 提示 'node' 不是内部或外部命令,也不是可运行的程序或批处理文件原因:检查环境变量没有配置正确配置环境变量: windows系统里, 需 ...

  9. Java中的RSA加解密工具类:RSAUtils

    本人手写已测试,大家可以参考使用 package com.mirana.frame.utils.encrypt; import com.mirana.frame.utils.log.LogUtils; ...

  10. java 接口的学习

    1   什么是接口 接口是一种引用数据类型.使用interface声明接口,形式:  public interface 接口名称{} 1.1.1 接口的特性 [1] 接口中可以声明属性.接口中定义的所 ...