【BZOJ3813】奇数国

Description

给定一个序列,每次改变一个位置的数,或是询问一段区间的数的乘积的phi值。每个数都可以表示成前60个质数的若干次方的乘积。

Sample Input

6
0 1 3
1 1 5
0 1 3
1 1 7
0 1 3
0 2 3

Sample Output

18
24
36
6

HINT

x≤100000,当ai=0时0≤ci−bi≤100000

题解:显然我们可以先求出区间乘积,然后判断一下每个质数是否在其中出现过即可,如果出现过,则ans*=(P-1)/P。

由于只有60个质数,所以用一个long long存起来就行,然后用线段树维护一下。

#include <cstdio>
#include <cstring>
#include <iostream>
#define lson x<<1
#define rson x<<1|1
using namespace std;
typedef long long ll;
const int maxn=100010;
int n=100000,m,num;
int pri[100],np[300];
ll ine[100];
const ll P=19961993;
struct node
{
ll x,y;
node() {}
node(ll a,ll b) {x=a,y=b;}
node operator + (const node &a) const {return node(x*a.x%P,y|a.y);}
}s[maxn<<2];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void build(int l,int r,int x)
{
if(l==r)
{
s[x]=node(3,2);
return ;
}
int mid=(l+r)>>1;
build(l,mid,lson),build(mid+1,r,rson);
s[x]=s[lson]+s[rson];
}
void updata(int l,int r,int x,int a,ll b)
{
if(l==r)
{
s[x]=node(b,0);
for(int i=1;i<=60;i++) if(b%pri[i]==0) s[x].y|=(1ll<<(i-1));
return ;
}
int mid=(l+r)>>1;
if(a<=mid) updata(l,mid,lson,a,b);
else updata(mid+1,r,rson,a,b);
s[x]=s[lson]+s[rson];
}
node query(int l,int r,int x,int a,int b)
{
if(a<=l&&r<=b) return s[x];
int mid=(l+r)>>1;
if(b<=mid) return query(l,mid,lson,a,b);
if(a>mid) return query(mid+1,r,rson,a,b);
return query(l,mid,lson,a,b)+query(mid+1,r,rson,a,b);
}
inline ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%P;
x=x*x%P,y>>=1;
}
return z;
}
int main()
{
m=rd();
int i,j,a,b,op;
for(i=2;i<=281;i++)
{
if(!np[i]) pri[++num]=i,ine[num]=pm(i,P-2);
for(j=1;j<=num&&i*pri[j]<=281;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
build(1,n,1);
for(i=1;i<=m;i++)
{
op=rd(),a=rd(),b=rd();
if(!op)
{
node tmp=query(1,n,1,a,b);
for(j=1;j<=60;j++) if((tmp.y>>(j-1))&1) tmp.x=tmp.x*ine[j]%P*(pri[j]-1)%P;
printf("%lld\n",tmp.x);
}
else updata(1,n,1,a,b);
}
return 0;
}//6 0 1 3 1 1 5 0 1 3 1 1 7 0 1 3 0 2 3

【BZOJ3813】奇数国 线段树+欧拉函数的更多相关文章

  1. [bzoj3813] 奇数国 [线段树+欧拉函数]

    题面 传送门 思路 这题目是真的难读......阅读理解题啊...... 但是理解了以后就发现,题目等价于: 给你一个区间,支持单点修改,以及查询一段区间的乘积的欧拉函数值,这个答案对19961993 ...

  2. BZOJ 3813--奇数国(线段树&欧拉函数&乘法逆元&状态压缩)

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 755  Solved: 432[Submit][Status][Discuss] ...

  3. 【bzoj3813】: 奇数国 数论-线段树-欧拉函数

    [bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持 ...

  4. [BZOJ3813] 奇数国 - 线段树

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 508[Submit][Status][Discuss] ...

  5. Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)

    题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...

  6. 线段树+欧拉函数——cf1114F

    调了半天,写线段树老是写炸 /* 两个操作 1.区间乘法 2.区间乘积询问欧拉函数 欧拉函数计算公式 phi(mul(ai))=mul(ai) * (p1-1)/p1 * (p2-1)/p2 * .. ...

  7. Please, another Queries on Array? CodeForces - 1114F (线段树,欧拉函数)

    这题刚开始看成求区间$\phi$和了........先说一下区间和的做法吧...... 就是说将题目的操作2改为求$(\sum\limits_{i=l}^{r}\phi(a[i]))\%P$ 首先要知 ...

  8. BZOJ4869 六省联考2017相逢是问候(线段树+欧拉函数)

    由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余 ...

  9. BZOJ 4026: dC Loves Number Theory 可持久化线段树 + 欧拉函数 + 数学

    Code: #include <bits/stdc++.h> #define ll long long #define maxn 50207 #define setIO(s) freope ...

随机推荐

  1. 用Web API Client 调用 Web API

    安装Web API客户端库 右键单击项目,选择管理 NuGet程序包,选择联机选项,选择全部,在搜索框中输入“Microsoft.AspNet.WebApi.Client”, 搜索结果就是要安装的类库 ...

  2. JS 毫秒日期相互转换 JS获取 今天 明天 昨天的日期

    var dd = new Date(); var AddDayCount = 0; //0 今天 1 明天 -1 昨天 以此类推 dd.setDate(dd.getDate() + AddDayCou ...

  3. 使用C#开发ActiveX控件[Obsolete]

    文章出处:http://www.cnblogs.com/yilin/archive/2009/09/15/1567332.html 附件下载(源代码+安装文件+教程) 0. 前言 ActiveX控件以 ...

  4. 阿里云slb实现多域名https

    刚开始接锅,没注意原来站点的https配置在slb上,在服务器上配置一顿操作猛如虎,细细检查一遍,感觉良好,一测试发现不对劲,检查发现原来https配置在阿里云slb上,阿里云还是做得不错的 ,但是现 ...

  5. NoSQL(二)

    redis介绍 1.aof存储的文件会越来越大,当文件很大时我们可以进行一次rdb存储原来的aof文件就可以删除了,因为aof就相当与mysql中的binlog文件会一致增长,当redis里面的key ...

  6. javascript中call apply的区别

    obj.call(thisObj, arg1, arg2, ...); obj.apply(thisObj, [arg1, arg2, ...]); 两者作用一致,都是把obj(即this)绑定到th ...

  7. 集成讯飞听写iOS sdk到unity遇到的问题:weak成员和strong成员

    在unity里集成讯飞语音听写iOS sdk的过程中,遇到一个问题,官方的demo中可以将多次onResults回调返回的结果累积拼接起来组成一个完整的结果,而我集成过来以后就不能累积了,只拿到最后一 ...

  8. 【Android应用开发技术:用户界面】布局管理器

    作者:郭孝星 微博:郭孝星的新浪微博 邮箱:allenwells@163.com 博客:http://blog.csdn.net/allenwells Github:https://github.co ...

  9. 记一次netty版本冲突,报java.lang.NoSuchMethodError: io.netty.util.internal.ObjectUtil.checkPositive的问题

    elasticsearch 5.6中使用TransportClient初始化抛异常 在引入elasticsearch5.6的transportclient包中,会引入netty进行通信. <!- ...

  10. 【Objective-C】01-Objective-C概述

    前言 目前来说,Objective-C(简称OC)是iOS开发的核心语言,在开发过程中也会配合着使用C语言.C++,OC主要负责UI界面,C语言.C++可用于图形处理.近来,流传Ruby.C#也可以开 ...