题目描述

Goneril is a very sleep-deprived cow. Her day is partitioned into N (3 <= N <= 3,830) equal time periods but she can spend only B (2 <= B < N) not necessarily contiguous periods in bed. Due to her bovine hormone levels, each period has its own utility U_i (0 <= U_i <= 200,000), which is the amount of rest derived from sleeping during that period. These utility values are fixed and are independent of what Goneril chooses to do, including when she decides to be in bed. With the help of her alarm clock, she can choose exactly which periods to spend in bed and which periods to spend doing more critical items such as writing papers or watching baseball. However, she can only get in or out of bed on the boundaries of a period. She wants to choose her sleeping periods to maximize the sum of the utilities over the periods during which she is in bed. Unfortunately, every time she climbs in bed, she has to spend the first period falling asleep and gets no sleep utility from that period. The periods wrap around in a circle; if Goneril spends both periods N and 1 in bed, then she does get sleep utility out of period 1. What is the maximum total sleep utility Goneril can achieve?

贝茜是一只非常缺觉的奶牛.她的一天被平均分割成N段(3≤N≤3830),但是她要用其中的B段时间(2≤B< N)睡觉.每段时间都有一个效用值Ui(0≤Ui≤200000),只有当她睡觉的时候,才会发挥效用.    有了闹钟的帮助,贝茜可以选择任意的时间入睡,当然,她只能在时间划分的边界处入睡、醒来.    贝茜想使所有睡觉效用的总和最大.不幸的是,每一段睡眠的第一个时间阶段都是“入睡”阶段,而旦不记入效用值.    时间阶段是不断循环的圆(一天一天是循环的嘛),假如贝茜在时间N和时间1睡觉,那么她将得到时间1的效用值.

输入

* Line 1: Two space-separated integers: N and B

* Lines 2..N+1: Line i+1 contains a single integer, U_i, between 0 and 200,000 inclusive

    第1行:两个整数,N和B.
    第2到N+1行:每行1个数字,代表了时间i的效用值.

输出

* Line 1: A single integer, the maximum total sleep utility Goneril can achieve.

    最大的效用值.

样例输入

5 3
2
0
3
1
4

样例输出

6


题解

dp

先不管环的问题,想象成一个时间段。

那么很容易想到状态转移方程:

f[i][j]=max(f[i-1][j-1]+w[i],g[i-1][j-1])

g[i][j]=max(f[i-1][j],g[i-1][j])

其中f[i][j]表示前i个小时中总共睡j个小时,且其i个小时睡的最大效用值,

g[i][j]表示前i个小时中总共睡j个小时,且其i个小时不睡的最大效用值。

答案就是max(f[n][b],g[n][b])。

然后考虑环的问题。

除了刚才讨论的情况之外,如果出现环,一定是从某个点开始,经过n和1,再停止。

这时候n和1一定是睡的情况。

考虑断环,那么和正常情况相比,唯一的区别就是从1开始的一段中,w[1]也算进了答案中(题目中描述:每一段的第一段都不算进效用值)。

所以改一下初始条件,再按照同样的方法跑一遍dp即可,答案是f[n][b]。

最后取最大值即可。

由于空间限制,需要使用滚动数组黑科技,看代码应该不难理解。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[2][3831] , g[2][3831] , w[3831];
int main()
{
int n , b , i , j , ans = 0x80808080;
scanf("%d%d" , &n , &b);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &w[i]);
memset(f , 0x80 , sizeof(f));
memset(g , 0x80 , sizeof(g));
f[1][1] = g[1][0] = 0;
for(i = 2 ; i <= n ; i ++ )
{
for(j = 0 ; j <= b ; j ++ )
{
if(j)
f[i & 1][j] = max(f[(i & 1) ^ 1][j - 1] + w[i] , g[(i & 1) ^ 1][j - 1]);
g[i & 1][j] = max(f[(i & 1) ^ 1][j] , g[(i & 1) ^ 1][j]);
}
}
ans = max(f[n & 1][b] , g[n & 1][b]);
memset(f , 0x80 , sizeof(f));
memset(g , 0x80 , sizeof(g));
f[1][1] = w[1];
for(i = 2 ; i <= n ; i ++ )
{
for(j = 0 ; j <= b ; j ++ )
{
if(j)
f[i & 1][j] = max(f[(i & 1) ^ 1][j - 1] + w[i] , g[(i & 1) ^ 1][j - 1]);
g[i & 1][j] = max(f[(i & 1) ^ 1][j] , g[(i & 1) ^ 1][j]);
}
}
ans = max(ans , f[n & 1][b]);
printf("%d\n" , ans);
return 0;
}

【bzoj1737】[Usaco2005 jan]Naptime 午睡时间 dp的更多相关文章

  1. BZOJ1737 [Usaco2005 jan]Naptime 午睡时间

    断环然后裸DP就好了... $f[i][j][k]$表示1号时间段没有被算入答案,到了第$i$个时间段,一共选了$j$个时间段,$k = 0 /1$表示第i个时间段有没有被算进答案的最优值 $g[i] ...

  2. BZOJ 1677: [Usaco2005 Jan]Sumsets 求和( dp )

    完全背包.. --------------------------------------------------------------------------------------- #incl ...

  3. 1677: [Usaco2005 Jan]Sumsets 求和

    1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 626  Solved: 348[Submi ...

  4. BZOJ1679: [Usaco2005 Jan]Moo Volume 牛的呼声

    1679: [Usaco2005 Jan]Moo Volume 牛的呼声 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 723  Solved: 346[ ...

  5. BZOJ1677: [Usaco2005 Jan]Sumsets 求和

    1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 570  Solved: 310[Submi ...

  6. BZOJ 1679: [Usaco2005 Jan]Moo Volume 牛的呼声( )

    一开始直接 O( n² ) 暴力..结果就 A 了... USACO 数据是有多弱 = = 先sort , 然后自己再YY一下就能想出来...具体看code --------------------- ...

  7. BZOJ 1677: [Usaco2005 Jan]Sumsets 求和

    题目 1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 617  Solved: 344[Su ...

  8. bzoj 1735: [Usaco2005 jan]Muddy Fields 泥泞的牧场 最小点覆盖

    链接 1735: [Usaco2005 jan]Muddy Fields 泥泞的牧场 思路 这就是个上一篇的稍微麻烦版(是变脸版,其实没麻烦) 用边长为1的模板覆盖地图上的没有长草的土地,不能覆盖草地 ...

  9. 43 We were Born to Nap 我们天生需要午睡

    We were Born to Nap 我们天生需要午睡 ①American society is not nap-friendly.In fact, says David Dinged, a sle ...

随机推荐

  1. springBoot整合ecache缓存

    EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特点,是Hibernate中默认的CacheProvider. ehcache提供了多种缓存策略,主要分为内存和磁盘两级,所以无需担心 ...

  2. BZOJ1085_骑士精神_KEY

    题目传送门 乍一看好像是搜索题,但搜索明显会超时. 此处采用IDA*的方法求解. IDA*算法就是基于迭代加深的A*算法. code: /******************************* ...

  3. BZOJ1821_Group部落划分_KEY

    题目传送门 这是一道并查集的题目,相信很多人都看出来了. 用一个类似Kurskal的东西求出最近的最大值. 对于一些可以划分在同一个部落里的边,我们一定是优先选择短边合并. code: /****** ...

  4. SSM-Spring-23:概念《Spring中的事务是什么?》

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客会详细讲述Spring中的事务,会展开来用语言解释,用于了解概念和准备面试 事务的概念: 一个或者一组 ...

  5. python 水仙花

    #简单def narcissus(): for n in range(100, 1000, 1): a, b, c = n//100, (n//10)%10, (n%100)%10 if a ** 3 ...

  6. Python 发邮件例子

    Python 发邮件例子 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019-04-23 16:12:33 # @Autho ...

  7. 前端开发工程师 - 02.JavaScript程序设计 - 期末考试

    期末考试客观题 期末考试主观题 https://www.15yan.com/story/aY0HWAQ7oNU/     1(8分) 函数myType用于根据输入参数返回相应的类型信息. 语法如下: ...

  8. 如何编写 Python 程序

    如何编写 Python 程序 从今以后,保存和运行 Python 程序的标准步骤如下: 对于 PyCharm 用户 打开 PyCharm. 以给定的文件名创建新文件. 输入案例中给出的代码. 右键并运 ...

  9. 微信小程序之基础案例详细解释

    这是案例的初始页面 首先关于这个案例上面的app.json做一个特别详细的解释 首先提醒一下.json文件不能有注释,因此如果要复制的话,请把注释删去 //关于app.json详细学习 { //pag ...

  10. 【xmlHttp_Class 远程访问类】使用说明

    类名:xmlHttp_Class 说明:远程获取外部网站数据信息或执行一个外部网站程序 目录: 类型 名称 参数 返回 说明 属性 [必需] [xmlHttp].url = [urlString] - ...