[BZOJ2067]szn
description
solution
一道非常好的二分+贪心题目。
第一问就是\(\frac{\sum_u(deg[u]-1)}{2}+1\)。
第二问需要在方案最优的情况下最长链最短,考虑二分。
那么自底向上地考虑每个子树中的节点,
我们发现每个节点要产生最优方案,一定是考虑选择自己伸向父亲的链和合并儿子伸向自己的链。
于是我们把所有儿子伸向自己的链长排序,
那么我们需要在合并的链长不超过二分答案的情况下使得伸向父亲的链长最小。
由于伸向父亲链长越小合并答案越不容易满足,因此考虑二分这个伸向父亲的链长。
总复杂度为\(O(nlog^2n)\)
Code
#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define Cpy(x,y) memcpy(x,y,sizeof(x))
#define Set(x,y) memset(x,y,sizeof(x))
#define FILE "a"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-7;
const int N=300010;
const int M=1000010;
const int inf=2147483647;
const ll INF=1e18+1;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
}
il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
}
int n;
int head[N],nxt[N<<1],to[N<<1],cnt,d[N];
int c,flg;
int f[N];VI L[N];
il int pick(int k,int fb){
RG int len=L[k].size(),mx=0;
if(!((len&1)^(fb==-1))){if(fb==len-1)len--;mx=L[k][len-1];len--;}
for(RG int i=0,j=len-1;i<=j;i++,j--){
if(i==fb)i++;if(j==fb)j--;if(i>j)break;
mx=max(mx,L[k][i]+L[k][j]);
}
return mx;
}
void dfs(int u,int ff){
f[u]=0;L[u].clear();
for(RG int i=head[u];i;i=nxt[i]){
RG int v=to[i];if(v==ff)continue;
dfs(v,u);if(!flg)return;
L[u].push_back(f[v]+1);
}
sort(L[u].begin(),L[u].end());
if(!ff){if(pick(u,-1)>c){flg=0;return;}return;}
else if((d[u]&1)&&pick(u,-1)<=c)return;
RG int l=0,r=L[u].size()-1,mid;
while(l<=r){
mid=(l+r)>>1;
if(pick(u,mid)<=c)f[u]=L[u][mid],r=mid-1;
else l=mid+1;
}
if(!f[u]){flg=0;return;}
}
il bool check(int w){c=w;flg=1;dfs(1,0);return flg;}
int main()
{
n=read();
for(RG int i=1,u,v;i<n;i++){
u=read();v=read();d[u]++;d[v]++;
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
to[++cnt]=u;nxt[cnt]=head[v];head[v]=cnt;
}
RG int l=1,r=n-1,mid,ans=n,ret=0;
for(RG int i=1;i<=n;i++)ret+=(d[i]-1)/2;ret++;
while(l<=r){
mid=((l+r)>>1);
if(check(mid))ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d %d\n",ret,ans);
return 0;
}
[BZOJ2067]szn的更多相关文章
- $bzoj2067\ szn$ 二分+贪心
正解:二分+贪心 解题报告: 传送门$QwQ$ 题目大意就说有一棵树,然后要用若干条线覆盖所有边且不能重叠.问最少要用几条线,在用线最少的前提下最长的线最短是多长. 昂首先最少用多少条线这个还是蛮$e ...
- 【BZOJ2067】SZN(二分,动态规划,贪心)
[BZOJ2067]SZN(二分,动态规划,贪心) 题面 权限题额 Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图 ...
- 【BZOJ2067】[Poi2004]SZN 二分+树上贪心
[BZOJ2067][Poi2004]SZN Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图模型. 每个图都是由一 ...
- bzoj2067: [Poi2004]SZN
Description String-Toys joint-stock 公司需要你帮他们解决一个问题. 他们想制造一个没有环的连通图模型. 每个图都是由一些顶点和特定数量的边构成. 每个顶点都可以连向 ...
- 【BZOJ2067】[Poi2004]SZN
题解: 比上一题水多了 首先树上贪心,肯定要考虑儿子 然后我们会发现这个东西就是要先把儿子连起来 然后如果儿子个数为奇数我们可以把这一条和它连向父亲的并在一起 由于根没有父亲所以要单独考虑 答案就是s ...
- 2067: [Poi2004]SZN——树上贪心+二分
题目大意: 给一棵树.求用最少的链覆盖这棵树(链不能相交),在这个基础上求最长的链最短可以是多少. n<=10000 题解: 肯定先处理第一问: 答案:$\sum_(du[i]-1)/2+1$ ...
- [POI2004] SZN
Description 给定\(N(N\leq 10000)\)个点的树,要求用最少的路径覆盖树边.路径之间可以有交点,不能有交边.问最少需要几条路径以及在第一问的基础上最长的路径最短是多少? Sol ...
- bzoj 2067 [Poi2004]SZN——二分+贪心
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2067 最少的线段可以贪心地想出来.(结果还是写错了)就是偶数孩子可以自己配对,奇数孩子要带一 ...
- bzoj 2067: [Poi2004]SZN【贪心+二分+树形dp】
第一问就是Σ(deg[u]-1)/2+1 第二问是二分,判断的时候考虑第一问的贪心规则,对于奇度数的点,两两配对之后一条延伸到上面:对于欧度数的点,两两配对或者deg[u]-2的点配对,然后一条断在这 ...
随机推荐
- GDAL中GDALDataset::RasterIO分块读取的实现
GDALDataset类中的RasterIO函数能够对图像任意指定区域.任意波段的数据按指定数据类型.指定排列方式读入内存和写入文件中,因此可以实现对大影像的分块读.写运算操作.针对特大的影像图像,有 ...
- AOSP 设置编译输出目录
export OUT_DIR=/media/caoxinyu/TomasYu/out 注意:export OUT_DIR= OUT_DIR 后面直接跟= ,不要有空格.否则报错.
- Docker - 容器中的tomcat如何使用startup.sh启动
网上大多介绍的catalina.sh启动,因为docker容器中,无法直接启动startup.sh. 解决方法: 编辑catalina.sh,找到 >> "$CATALINA_O ...
- 深入解析UUID及其应用(转载)
UUID 编辑 UUID含义是通用唯一识别码 (Universally Unique Identifier),这 是一个软件建构的标准,也是被开源软件基金会 (Open Software Founda ...
- 客户端SDK测试思路
本文来自网易云社区 作者:万春艳 是什么 客户端SDK是为第三方开发者提供的软件开发工具包,包括SDK接口.开发文档和Demo示例等.SDK和应用之间是什么关系呢?以云信即时消息服务为例,如下图所示, ...
- 关于 Windows 10 字体安装目录的问题
不知从什么时候开始,本人台式机的Win10系统在安装字体的时候并不是安装到C:\Windows\Fonts目录中,而是安装到%USERPROFILE%\AppData\Local\Microsoft\ ...
- 读google c++规范笔记
全局变量在main函数之前初始化原则上禁止拷贝构造函数和赋值函数如果只有数据,没有方法,可以用struct析构函数声明为虚函数尽量避免重载操作符 难以定位的bug 误以为简单的操作存取控制 可以放到声 ...
- Centos 7 快速安装 Docker
摘要: 安装 Docker [root@localhost~]# yum install docker 启动 docker 服务 [root@localhost~]# systemctl start ...
- Qt 计算两个日前间隔天数
某一个大神写的 改写了一点 请无视注释 //时间计算法则 /********************************************************************** ...
- appcrawler遍历工具常用方法
Usage: appcrawler [options] -a, --app <value> Android或者iOS的文件地址, 可以是网络地址, 赋值给appium的app选项 -c, ...