https://www.lydsy.com/JudgeOnline/problem.php?id=3990

小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的

i(1<=i<=N),第i中操作为将序列从左到右划分为2^{N-i+1}段,每段恰好包括2^{i-1}个数,然后整体交换其中两段.小A想知道可以将数组A从小到

大排序的不同的操作序列有多少个,小A认为两个操作序列不同,当且仅当操作个数不同,或者至少一个操作不同(种类不同或者操作位置不同).

下面是一个操作事例:

N=3,A[1..8]=[3,6,1,2,7,8,5,4].

第一次操作,执行第3种操作,交换A[1..4]和A[5..8],交换后的A[1..8]为[7,8,5,4,3,6,1,2].

第二次操作,执行第1种操作,交换A[3]和A[5],交换后的A[1..8]为[7,8,3,4,5,6,1,2].

第三次操作,执行第2中操作,交换A[1..2]和A[7..8],交换后的A[1..8]为[1,2,3,4,5,6,7,8].

考虑暴力怎么写……不会啊。

我们能知道实际上操作顺序不影响结果,于是我们大可以从1~n枚举操作做。

因为最终变得有序,所以我们可以对于每一“大块”查询是否已经排好序了,如果没排好,就说明这一“大块”里的两小块肯定是放错位置的。

如果这样的小块<=4的话我们还好办,显然是前一“大块”的其中一“小块”和后一“大块”的其中一“小块”交换位置。

如果<=2那么就这两块交换就行了。

如果>4我们就处理不了了。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=<<;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int n,m,a[N];
ll jc[N],ans;
bool pan(int l,int r){
for(int i=l;i<r;i++)
if(a[i]+!=a[i+])return ;
return ;
}
void mdy(int l,int r,int k){
for(int i=l,j=r;i<l+(<<k);i++,j++)
swap(a[i],a[j]);
}
void dfs(int l,int num){
if(l>n){
ans+=jc[num];
return;
}
int tmp[],tot=;
for(int i=;i<=m;i+=(<<l))
if(!pan(i,i+(<<l)-)){
tmp[++tot]=i;
if(tot>)return;
}
if(!tot){dfs(l+,num);return;}
else if(tot==){
mdy(tmp[],tmp[]+(<<l-),l-);
if(pan(tmp[],tmp[]+(<<l-)))dfs(l+,num+);
mdy(tmp[],tmp[]+(<<l-),l-);
}else{
for(int i=;i<=;i++)
for(int j=;j<=;j++){
mdy(tmp[]+(i<<(l-)),tmp[]+(j<<(l-)),l-);
if(pan(tmp[],tmp[]+(<<l-))&&
pan(tmp[],tmp[]+(<<l-)))dfs(l+,num+);
mdy(tmp[]+(i<<(l-)),tmp[]+(j<<(l-)),l-);
}
}
}
int main(){
n=read(),m=<<n;
jc[]=;for(int i=;i<=n;i++)jc[i]=jc[i-]*i;
for(int i=;i<=m;i++)a[i]=read();
dfs(,);
printf("%lld\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3990:[SDOI2015]排序——题解的更多相关文章

  1. [BZOJ3990][SDOI2015]排序(DFS)

    3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 902  Solved: 463[Submit][Status][ ...

  2. BZOJ3990 [SDOI2015]排序 【搜索】

    题目 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到 ...

  3. [BZOJ3990]:[SDOI2015]排序(搜索)

    题目传送门 题目描述 小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N), ...

  4. [SDOI2015]排序 题解 (搜索)

    Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中 ...

  5. Bzoj3990 [SDOI2015]排序

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 651  Solved: 338 Description 小A有一个1-2^N的排列A[1..2^N], ...

  6. [bzoj3990][SDOI2015]排序-搜索

    Brief Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<= ...

  7. 【LG3322】[SDOI2015]排序

    [LG3322][SDOI2015]排序 题面 洛谷 题解 交换顺序显然不影响答案,所以每种本质不同的方案就给答案贡献次数的阶乘. 从小往大的交换每次至多\(4\)中决策,复杂度\(O(4^n)\). ...

  8. BZOJ 3990: [SDOI2015]排序 [搜索]

    3990: [SDOI2015]排序 题意:\(2^n\)的一个排列,给你n种操作,第i种把每\(2^{i-1}\)个数看成一段,交换任意两段.问是这个序列有序的操作方案数,两个操作序列不同,当且仅当 ...

  9. BZOJ 3990: [SDOI2015]排序(搜索+剪枝)

    [SDOI2015]排序 Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1< ...

随机推荐

  1. 图片文件转换成Base64编码实现ajax提交图片

    //上传头像图片 function uploadHead(imgPath) { console.log("imgPath = " + imgPath); var image = n ...

  2. 转:asp.net mvc ef 性能监控调试工具 MiniProfiler

    MiniProfiler官网:http://miniprofiler.com/ MiniProfiler的一个特别有用的功能是它与数据库框架的集成.除了.NET原生的 DbConnection类,Mi ...

  3. <cctype>

    头文件名称:  <cctype> (ctype.h) 头文件描述: 这是一个拥有许多字符串处理函数声明的头文件,这些函数可以用来对单独字符串进行分类和转换: 其中的函数描述: 这些函数传入 ...

  4. Solr与Elasticsearch区别

    Elasticsearch Elasticsearch是一个实时的分布式搜索和分析引擎.它可以帮助你用前所未有的速度去处理大规模数据. 它可以用于全文搜索,结构化搜索以及分析. 优点 Elastics ...

  5. 【CSV数据文件】

    文件参数化设置方法

  6. Redis 数据结构服务器

    Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久 ...

  7. 使用手机登录OWA修改密码的问题

    最近发现使用手机端登录OWA,安卓手机是可以修改密码的,如图1,但是iPhone就不成,safari和第三方都不可以,如图二. 图一 图二

  8. HADOOP docker(三):HDFS高可用实验

      前言1.机器环境2.配置HA2.1 修改hdfs-site.xml2.2 设置core-site.xml3.配置手动HA3.1 关闭YARN.HDFS3.2 启动HDFS HA4.配置自动HA4. ...

  9. 为什么23种设计模式中没有MVC

    GoF (Gang of Four,四人组, <Design Patterns: Elements of Reusable Object-Oriented Software>/<设计 ...

  10. Git使用笔记一(关于如何设置密钥及提交)(Windows)

    如何设置密钥 ssh-keygen -t rsa或ssh-keygen -t rsa -C ‘邮箱’ (注意 1.-t前有一个空格:2.keygen是key generate的缩写:3.而后连续输入三 ...