题目描述

The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

输入

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

输出

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

样例输入

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

样例输出

NO

YES
1
2
3
2
1
1


题目大意

给你一张n个点和m条边的图,每条边有[li,ri]的容量,求是否有可行流?有则输出一组方案。

题解

有上下界网络流无源汇可行流模板题,题意都很直白。

转化为最大流。

假设有一条容量为[l,r]的路径连通x->y,那么进行如下操作:

1.记录路径的l(求总流量时会用到)

2.加入x->y,容量为r-l的边

3.将x的流入总数in[x]减去l,将y的流入总数in[y]加上l。

处理完所有路径后,再建立超级源点和超级汇点,并扫一遍每个点。

对于点x,如果in[x]>0,则加S->x,容量为in[x]的边,否则加x->T,容量为-in[x]的边。

跑一遍最大流,如果满流则有解,否则无解。

有解时,对于每条通道i,它的总流量为下界low[i]加上新图的流出量val[i<<1|1]。

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
queue<int> q;
int head[210] , to[100000] , val[100000] , next[100000] , cnt , low[100000] , in[210] , dis[100000] , s , t;
void add(int x , int y , int z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
bool bfs()
{
int x , i;
while(!q.empty()) q.pop();
memset(dis , 0 , sizeof(dis));
dis[s] = 1;
q.push(s);
while(!q.empty())
{
x = q.front();
q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int l)
{
if(x == t) return l;
int temp = l , k , i;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return l - temp;
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
int n , m , i , x , y , z , sum = 0 , maxflow = 0;
scanf("%d%d" , &n , &m);
memset(head , 0 , sizeof(head));
memset(in , 0 , sizeof(in));
cnt = 1;
s = 0 , t = n + 1;
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d%d%d" , &x , &y , &low[i] , &z);
in[x] -= low[i] , in[y] += low[i];
add(x , y , z - low[i]) , add(y , x , 0);
}
for(i = 1 ; i <= n ; i ++ )
{
if(in[i] > 0) sum += in[i] , add(s , i , in[i]) , add(i , s , 0);
else if(in[i] < 0) add(i , t , -in[i]) , add(t , i , 0);
}
while(bfs()) maxflow += dinic(s , 0x7fffffff);
if(maxflow != sum) printf("NO\n");
else
{
printf("YES\n");
for(i = 1 ; i <= m ; i ++ )
printf("%d\n" , val[i << 1 | 1] + low[i]);
}
printf("\n");
}
return 0;
}

【zoj2314】Reactor Cooling 有上下界可行流的更多相关文章

  1. ZOJ2314 Reactor Cooling(无源汇上下界可行流)

    The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...

  2. ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...

  3. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  4. Zoj 2314 Reactor Cooling(无源汇有上下界可行流)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:    给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...

  5. zoj2314 无源汇上下界可行流

    题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...

  6. ZOJ_2314_Reactor Cooling_有上下界可行流模板

    ZOJ_2314_Reactor Cooling_有上下界可行流模板 The terrorist group leaded by a well known international terroris ...

  7. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  8. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  9. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

随机推荐

  1. MapWinGIS使用

    .net语言中使用MapWinGIS.ocx http://www.cnblogs.com/kekec/archive/2011/03/30/1999709.html 基于MapWinGis的开发探索 ...

  2. 理解C指针: 一个内存地址对应着一个值

    一个内存地址存着一个对应的值,这是比较容易理解的. 如果程序员必须清楚地知道某块内存存着什么内容和某个内容存在哪个内存地址里了,那他们的负担可想而知.    汇编语法对“一个内存地址存着一个对应的数” ...

  3. 北京Uber优步司机奖励政策(12月8日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. 佛山Uber优步司机奖励政策(7月27日-8月2日)

    周上线时间少于等于7个小时,以下奖励条件无效,仅返还车资.   滴滴快车单单2.5倍,注册地址:http://www.udache.com/如何注册Uber司机(全国版最新最详细注册流程)/月入2万/ ...

  5. C#学习第一阶段——语法基础

    C#是一门面向对象的编程语言.在面向对象的程序设计方法中,程序由各种相互交互的对象组成.相同种类的对象具有相同的属性,或者说是在相同的class 中的.       例如,以矩形为例,它具有高(len ...

  6. Selenium安装(二)

    安装python 安装Selenium之前首先来说一下Python,python是一门动态性语言,python的编写比较灵活,简洁,开发效率高.因此以python结合selenium来进行自动化测试. ...

  7. Zookeeper 分布式应用

    简介 这篇文章是旨在为那些想要利用zookeeper协调服务能力进行分布式应用创建的开发者的入门指导,包括一些理论性和实践性的内容. 文章的前四部分系统的介绍了zookeeper的相关概念,对于理解z ...

  8. Solr与Elasticsearch区别

    Elasticsearch Elasticsearch是一个实时的分布式搜索和分析引擎.它可以帮助你用前所未有的速度去处理大规模数据. 它可以用于全文搜索,结构化搜索以及分析. 优点 Elastics ...

  9. 158. Valid Anagram【LintCode by java】

    Description Write a method anagram(s,t) to decide if two strings are anagrams or not. Clarification ...

  10. 周期串 (Periodic Strings,UVa455)

    #include<stdio.h> #include<string.h> int main(void) { int n,stlen,i,j; ]; while(scanf(&q ...