题目描述

The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

输入

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

输出

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

样例输入

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

样例输出

NO

YES
1
2
3
2
1
1


题目大意

给你一张n个点和m条边的图,每条边有[li,ri]的容量,求是否有可行流?有则输出一组方案。

题解

有上下界网络流无源汇可行流模板题,题意都很直白。

转化为最大流。

假设有一条容量为[l,r]的路径连通x->y,那么进行如下操作:

1.记录路径的l(求总流量时会用到)

2.加入x->y,容量为r-l的边

3.将x的流入总数in[x]减去l,将y的流入总数in[y]加上l。

处理完所有路径后,再建立超级源点和超级汇点,并扫一遍每个点。

对于点x,如果in[x]>0,则加S->x,容量为in[x]的边,否则加x->T,容量为-in[x]的边。

跑一遍最大流,如果满流则有解,否则无解。

有解时,对于每条通道i,它的总流量为下界low[i]加上新图的流出量val[i<<1|1]。

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
queue<int> q;
int head[210] , to[100000] , val[100000] , next[100000] , cnt , low[100000] , in[210] , dis[100000] , s , t;
void add(int x , int y , int z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
bool bfs()
{
int x , i;
while(!q.empty()) q.pop();
memset(dis , 0 , sizeof(dis));
dis[s] = 1;
q.push(s);
while(!q.empty())
{
x = q.front();
q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int l)
{
if(x == t) return l;
int temp = l , k , i;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return l - temp;
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
int n , m , i , x , y , z , sum = 0 , maxflow = 0;
scanf("%d%d" , &n , &m);
memset(head , 0 , sizeof(head));
memset(in , 0 , sizeof(in));
cnt = 1;
s = 0 , t = n + 1;
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d%d%d" , &x , &y , &low[i] , &z);
in[x] -= low[i] , in[y] += low[i];
add(x , y , z - low[i]) , add(y , x , 0);
}
for(i = 1 ; i <= n ; i ++ )
{
if(in[i] > 0) sum += in[i] , add(s , i , in[i]) , add(i , s , 0);
else if(in[i] < 0) add(i , t , -in[i]) , add(t , i , 0);
}
while(bfs()) maxflow += dinic(s , 0x7fffffff);
if(maxflow != sum) printf("NO\n");
else
{
printf("YES\n");
for(i = 1 ; i <= m ; i ++ )
printf("%d\n" , val[i << 1 | 1] + low[i]);
}
printf("\n");
}
return 0;
}

【zoj2314】Reactor Cooling 有上下界可行流的更多相关文章

  1. ZOJ2314 Reactor Cooling(无源汇上下界可行流)

    The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...

  2. ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...

  3. zoj 2314 Reactor Cooling (无源汇上下界可行流)

    Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...

  4. Zoj 2314 Reactor Cooling(无源汇有上下界可行流)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:    给n个点,及m根pipe,每根pipe用来流躺液体的,单向 ...

  5. zoj2314 无源汇上下界可行流

    题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...

  6. ZOJ_2314_Reactor Cooling_有上下界可行流模板

    ZOJ_2314_Reactor Cooling_有上下界可行流模板 The terrorist group leaded by a well known international terroris ...

  7. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  8. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  9. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

随机推荐

  1. 20145202mc《计算机病毒》实践3

    网站检测 http://www.virscan.org/ lab01-02.exe lab01-03.exe 分析这两个文件是否加壳了: Lab01-02.exe lab01-03.exe 查看两个样 ...

  2. 武汉Uber优步司机奖励政策

    ·武汉奖励前提 *必须满足当周平均评分4.7星及以上,且当周接单率70%及以上,才有资格获得奖励 *刷单和红线行为立即封号并取消当周全部奖励及车费! *从4月20日起,所有ETC和机场高速费用不参与奖 ...

  3. Android AOSP 编译sdk

    首先你要有AOSP 工程. 然后执行下面的命令编译sdk. //运行下面的命令得到编译环境 source build/envsetup.sh lunch sdk make sdk 最后文件输出在哪个位 ...

  4. VIO 初始化小结 - 10.17

    最近几个月忙于博士毕业,找工作一直没有继续更新博客,希望以这一篇开始,每个月能够继续有几篇总结博客. 首先review一下比较著名的vio系统 Tightly coupled EKF: mainly ...

  5. letsencrypt证书-管理工具certbot

    目录 1. 安装certbot 2. certbot 介绍 3. 插件的具体使用 3.1 webroot 3.2 standalone 3.3 DNS plugins 3.4 manual 4. 证书 ...

  6. leetcode--笔记8 Fizz Buzz

    题目要求: Write a program that outputs the string representation of numbers from 1 to n. But for multipl ...

  7. 一些窍门 drawable

    java.lang.Object       android.graphics.drawable.DrawableKnown Direct Subclasses   BitmapDrawable, C ...

  8. OpenSUSE 11 安装Qt5.0,失败,失败,失败,留个坑,以后来填,万一实现了呢

    我又来无耻的写问题来了,这次还真的是没有解决,线留坑吧,万一以后实现了. 同样,这次也是以恶搞网友说听说想在open suse 上面安装5.0版本以后的Qt,自己折腾好几没有成功. 我一想,哎,这不是 ...

  9. python编程os、os.path 模块中关于文件、目录常用的函数使用方法

    os模块中关于文件/目录常用的函数使用方法   函数名 使用方法 getcwd() 返回当前工作目录 chdir(path) 改变工作目录 listdir(path='.') 列举指定目录中的文件名( ...

  10. Java enum类型笔记

    用途: 定义命令行参数,菜单选项,星期,方向(东西南北)等 与普通类的不同 有默认的方法 value() 每个enum类都已默认继承java.lang.Enum,所以enum类不能继承其他类 构造方法 ...