Square Root of Permutation - CF612E
Description
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1... n. For example, the square of q = [4, 5, 1, 2, 3] is p = q2 = [2, 3, 4, 5, 1].
This problem is about the inverse operation: given the permutation p you task is to find such permutation q that q2 = p. If there are several such q find any of them.
Input
The first line contains integer n (1 ≤ n ≤ 106) — the number of elements in permutation p.
The second line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of permutation p.
Output
If there is no permutation q such that q2 = p print the number "-1".
If the answer exists print it. The only line should contain n different integers qi (1 ≤ qi ≤ n) — the elements of the permutation q. If there are several solutions print any of them.
Sample Input
4
2 1 4 3
3 4 2 1
4
2 1 3 4
-1
5
2 3 4 5 1
4 5 1 2 3
简单题意
给出一个大小为n的置换群p,求一个置换群q,使得q^2=p
胡说题解
首先我们观察q^2是怎么运算的,置换群可以看成一个一个的环,每个点i向a[i]连一条边就是那个图
q^2其实就是把i的边变成a[a[i]],也就是在环上走两步,然后q原本的环就变了
1.假设原来是奇数环,那么后来还是一个奇数环,只是顺序变了
2.假设原来是偶数环,那么就会拆成两个大小为一半的环
我们再看p
p上的奇数环可能是原来的奇数环,也有可能是偶数环拆开得来的
p上的偶数环只可能是原来的偶数环拆开得来
对于奇数环我们只要把这个环的后半部分与前半部分(先把这个环断开)交替插入就可以构造出原来的那个奇数环
对于偶数环我们就只能找一个相同大小的偶数环交替插入,即两个相同大小的偶数环合并,如果找不到相同大小的偶数环,那么我们就知道不存在这样的q使得q^2=p
#include<cstdio>
#include<algorithm>
using namespace std; const int maxn=; int n,tot,a[maxn],b[maxn],s[maxn],l[maxn],cir[maxn];
bool flag[maxn]; bool com(int a,int b){
return l[a]<l[b];
} int main(){
scanf("%d",&n);
int i,j,k;
for(i=;i<=n;i++)scanf("%d",&a[i]);
for(i=;i<=n;i++)
if(!flag[i]){
cir[++tot]=i;
flag[i]=true;
++l[i];
j=a[i];
while(!flag[j]){
flag[j]=true;
++l[i];
j=a[j];
}
}
sort(cir+,cir++tot,com);
int x=;
bool f=true;
for(i=;i<=tot;i++)
if((l[cir[i]]&)== ){
if(x==)x=l[cir[i]];
else
if(x==l[cir[i]])x=;
else f=false;
}
if(x!=)f=false;
if(f==false)printf("-1");
else{
for(i=;i<=tot;i++){
if((l[cir[i]]&)==){
j=cir[i];
k=;
while(flag[j]){
s[k]=j;
flag[j]=false;
k=(k+)%l[cir[i]];
j=a[j];
}
for(j=;j<l[cir[i]]-;j++)b[s[j]]=s[j+];
b[s[l[cir[i]]-]]=s[];
}
else{
j=cir[i];
k=cir[i+];
while(flag[j]){
b[j]=k;
b[k]=a[j];
flag[j]=false;
flag[k]=false;
j=a[j];
k=a[k];
}
++i;
}
}
for(i=;i<=n;i++)printf("%d ",b[i]);
}
return ;
}
AC代码
Square Root of Permutation - CF612E的更多相关文章
- Codeforces 612E - Square Root of Permutation
E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...
- CF612E Square Root of Permutation
题目分析 我们首先模拟一下题意 假设有一个 \(q _1\) \(p\) \(a_1\) \(a_x\) \(a_{a_1}\) \(a_{a_x}\) \(q\) \(x\) \(a_1\) \(a ...
- codefroces 612E Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...
- [CF 612E]Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...
- Codeforces.612E.Square Root of Permutation(构造)
题目链接 \(Description\) 给定一个\(n\)的排列\(p_i\),求一个排列\(q_i\),使得对于任意\(1\leq i\leq n\),\(q_{q_i}=p_i\).无解输出\( ...
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
随机推荐
- 成都Uber优步司机奖励政策(1月16日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 我错了的N个学习
其实在面对自己的失误的时候,勇敢的说我错了,就是我错了,不找借口,不找理由,然后就开始分析错误的原因,分析,总结,学习,提高,成为自己成长的垫脚石,这个才是正确的做法,做人要拿出精神头,拼死至休的劲头 ...
- MyBatis-SpringMVC整合
1.添加spring相关jar包 2.配置ehcache jar包. 3.添加ehcache mybatis 适配器jar包(在mybatis官网) 4.添加spring mybatis 适配器jar ...
- 回写盘写速度被限速为10M左右
问题现像如下图所示: 用hd-speed等测试虚拟盘速度都能达到90M/s左右,但复制文件到虚拟盘速度最高只有10M/s 原因:由于客户机开机加载这个随机驱动和随机进程后,会对磁盘启动进程等有扫描检查 ...
- wireshark抓包分析——TCP/IP协议
本文来自网易云社区 当我们需要跟踪网络有关的信息时,经常会说"抓包".这里抓包究竟是什么?抓到的包又能分析出什么?在本文中以TCP/IP协议为例,简单介绍TCP/IP协议以及如何通 ...
- ogg的安装配置 配置双向同步(含DDL)
第一部分 先配置单向同步(含DDL) 一 源端安装GoldenGate 创建用户 创建目录 mkdir -p /opt/ogg chmod -R 777 /opt/ogg chown -R oracl ...
- android学习十三 首选项
1,首选项可用用来持久保存用户设置,游戏最高分等 2,首选项有,列表首选项,复选框首选项,对话框首选项.. 3,通过xml文件和代码创建首选项 addPreferencesFromResou ...
- VueJs 学习笔记
VueJs学习笔记 参考资料:https://cn.vuejs.org/ 特效库:TweenJS(补间动画库) VelocityJS(轻量级JS动画库) Animate.css(CSS预设动画库) ...
- Windows运行机理——窗口句柄和消息
Windows运行机理这系列文章都是来至于<零基础学Qt4编程>——吴迪,个人觉得写得很好,所以进行了搬运和个人加工 现在我们将消息与句柄联系起来.假如有一个窗口,且拥有该窗口的一个句柄( ...
- 第六模块:WEB框架开发 第1章·Django框架开发1~50
01-Django基础介绍 02-Web应用程序1 03-Web应用程序2 04-http请求协议1 05-http请求协议2 06-http协议之响应协议 07-wsgire模块1 08-wsgir ...