Description

A permutation of length n is an array containing each integer from 1 to n exactly once. For example, q = [4, 5, 1, 2, 3] is a permutation. For the permutation q the square of permutation is the permutation p that p[i] = q[q[i]] for each i = 1... n. For example, the square of q = [4, 5, 1, 2, 3] is p = q2 = [2, 3, 4, 5, 1].

This problem is about the inverse operation: given the permutation p you task is to find such permutation q that q2 = p. If there are several such q find any of them.

Input

The first line contains integer n (1 ≤ n ≤ 106) — the number of elements in permutation p.

The second line contains n distinct integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of permutation p.

Output

If there is no permutation q such that q2 = p print the number "-1".

If the answer exists print it. The only line should contain n different integers qi (1 ≤ qi ≤ n) — the elements of the permutation q. If there are several solutions print any of them.

Sample Input

 

Input
4
2 1 4 3
Output
3 4 2 1
Input
4
2 1 3 4
Output
-1
Input
5
2 3 4 5 1
Output
4 5 1 2 3

简单题意

给出一个大小为n的置换群p,求一个置换群q,使得q^2=p

胡说题解

首先我们观察q^2是怎么运算的,置换群可以看成一个一个的环,每个点i向a[i]连一条边就是那个图

q^2其实就是把i的边变成a[a[i]],也就是在环上走两步,然后q原本的环就变了

1.假设原来是奇数环,那么后来还是一个奇数环,只是顺序变了

2.假设原来是偶数环,那么就会拆成两个大小为一半的环

我们再看p

p上的奇数环可能是原来的奇数环,也有可能是偶数环拆开得来的

p上的偶数环只可能是原来的偶数环拆开得来

对于奇数环我们只要把这个环的后半部分与前半部分(先把这个环断开)交替插入就可以构造出原来的那个奇数环

对于偶数环我们就只能找一个相同大小的偶数环交替插入,即两个相同大小的偶数环合并,如果找不到相同大小的偶数环,那么我们就知道不存在这样的q使得q^2=p

 #include<cstdio>
#include<algorithm>
using namespace std; const int maxn=; int n,tot,a[maxn],b[maxn],s[maxn],l[maxn],cir[maxn];
bool flag[maxn]; bool com(int a,int b){
return l[a]<l[b];
} int main(){
scanf("%d",&n);
int i,j,k;
for(i=;i<=n;i++)scanf("%d",&a[i]);
for(i=;i<=n;i++)
if(!flag[i]){
cir[++tot]=i;
flag[i]=true;
++l[i];
j=a[i];
while(!flag[j]){
flag[j]=true;
++l[i];
j=a[j];
}
}
sort(cir+,cir++tot,com);
int x=;
bool f=true;
for(i=;i<=tot;i++)
if((l[cir[i]]&)== ){
if(x==)x=l[cir[i]];
else
if(x==l[cir[i]])x=;
else f=false;
}
if(x!=)f=false;
if(f==false)printf("-1");
else{
for(i=;i<=tot;i++){
if((l[cir[i]]&)==){
j=cir[i];
k=;
while(flag[j]){
s[k]=j;
flag[j]=false;
k=(k+)%l[cir[i]];
j=a[j];
}
for(j=;j<l[cir[i]]-;j++)b[s[j]]=s[j+];
b[s[l[cir[i]]-]]=s[];
}
else{
j=cir[i];
k=cir[i+];
while(flag[j]){
b[j]=k;
b[k]=a[j];
flag[j]=false;
flag[k]=false;
j=a[j];
k=a[k];
}
++i;
}
}
for(i=;i<=n;i++)printf("%d ",b[i]);
}
return ;
}

AC代码

Square Root of Permutation - CF612E的更多相关文章

  1. Codeforces 612E - Square Root of Permutation

    E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...

  2. CF612E Square Root of Permutation

    题目分析 我们首先模拟一下题意 假设有一个 \(q _1\) \(p\) \(a_1\) \(a_x\) \(a_{a_1}\) \(a_{a_x}\) \(q\) \(x\) \(a_1\) \(a ...

  3. codefroces 612E Square Root of Permutation

    A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...

  4. [CF 612E]Square Root of Permutation

    A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...

  5. Codeforces.612E.Square Root of Permutation(构造)

    题目链接 \(Description\) 给定一个\(n\)的排列\(p_i\),求一个排列\(q_i\),使得对于任意\(1\leq i\leq n\),\(q_{q_i}=p_i\).无解输出\( ...

  6. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

  8. Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))

    C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

随机推荐

  1. 北京Uber优步司机奖励政策(1月29日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. Mac iTem2 自动登录服务器配置

    假设你要连接的服务器地址为123.123.123.123,端口号为8888,用户名为root,密码为mimamima 编写shell文件"login_server.sh",并放置于 ...

  3. P1294 高手去散步

    P1294 高手去散步 题目背景 高手最近谈恋爱了.不过是单相思.“即使是单相思,也是完整的爱情”,高手从未放弃对它的追求.今天,这个阳光明媚的早晨,太阳从西边缓缓升起.于是它找到高手,希望在晨读开始 ...

  4. c++ 面向对象程序设计

    1. OOP:概述 2. 定义基类和派生类 3. 虚函数 4. 抽象基类 5. 访问控制与继承 6. 继承中的类作用域 7. 构造函数与拷贝控制 8. 容器与继承

  5. Ruby 基础教程1-6

    1.循环实现方法 循环语句 (while;for; loop,until) 循环方法(times,each) 2.for           for 变量 in 对象             主体   ...

  6. Visual Studio 2015 Test Explorer does not show anything

    Problem After install Visual Studio 2015 community and NUnit Test Adapter, I cannot find test cases ...

  7. 「日常训练」Two Substrings(Codeforces Round 306 Div.2 A)

    题意与分析 一道非常坑的水题.分析醒了补. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back ...

  8. Unity初探之黑暗之光(1)

    Unity初探之黑暗之光(1) 1.镜头拉近 public float speed=10f;//镜头的移动速度 ;//镜头的结束位置 // Update is called once per fram ...

  9. Siki_Unity_1-9_Unity2D游戏开发_Roguelike拾荒者

    Unity 1-9 Unity2D游戏开发 Roguelike拾荒者 任务1:游戏介绍 Food:相当于血量:每走一步下降1,吃东西可以回复(果子10药水20),被怪物攻击会减少中间的障碍物可以打破, ...

  10. Java学习 · 初识 异常机制

    异常机制 1.   程序中的异常 a)     b)    面对异常如何解决 i.           由开发者通过if-else来解决 代码臃肿 程序员需要花费很大精力 ii.           ...