题目传送门

看题目可知这是一道差分约束的题目。

根据每种关系建边如下:

对于每种情况建边,然后跑一边SPFA。(最长路)

因为可能会有自环或环的情况,都不可能存在。

跑SPFA时记录入队次数,超过N弹出。

SPFA的dist起始值为1,ans=∑dist[i]

对于每个点做一遍SPFA会超时,所以将所有点放入队列中,所有点一起跑SPFA。

code:

/**************************************************************
    Problem: 2330
    User: yekehe
    Language: C++
    Result: Accepted
    Time:1280 ms
    Memory:43792 kb
****************************************************************/
 
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
 
int read()
{
    char c;while(c=getchar(),(c<''||c>'')&&c!='-');
    int x=,y=;c=='-'?y=-:x=c-'';
    while(c=getchar(),c>=''&&c<='')x=x*+c-'';
    return x*y;
}
 
struct list{
    int head[],nxt[],To[],W[],cnt;
    list(){
        memset(head,-,sizeof head);
        memset(nxt,-,sizeof nxt);
        cnt=;
    }
     
    void add(int x,int y,int c)
    {
        To[cnt]=y;
        W[cnt]=c;
        nxt[cnt]=head[x];
        head[x]=cnt;
        cnt++;
    }
}P;
 
int N,K;
int dist[],l[],flag[];
int into[],SF=;
 
void SPFA()
{
    int h=,t=;
    memset(into,,sizeof into);
        for(int i=;i<=N;i++)l[++t]=i,into[i]++;//入队++
        while(h<t){
            int front=l[++h];
            flag[front]=;
                for(int i=P.head[front];i!=-;i=P.nxt[i]){
                    if(dist[P.To[i]]<P.W[i]+dist[front]){//求最长路
                        dist[P.To[i]]=P.W[i]+dist[front];
                        if(!flag[P.To[i]]){
                            l[++t]=P.To[i],flag[P.To[i]]=;
                            into[P.To[i]]++;
                            if(into[P.To[i]]>N){SF=-;return ;}//判环
                        }
                    }
                }
        }
    return ;
}
 
int main()
{
    N=read();K=read();
    register int i;
        for(i=;i<=K;i++){
            int o=read(),x=read(),y=read();
                switch(o){
                    case :P.add(x,y,),P.add(y,x,);break;
                    case :P.add(x,y,);break;
                    case :P.add(y,x,);break;
                    case :P.add(y,x,);break;
                    case :P.add(x,y,);break;
                }
        }
        for(i=;i<=N;i++)dist[i]=;
    SPFA();
    if(SF<)return puts("-1"),;//有环
    long long ans=;
        for(i=;i<=N;i++)ans+=(long long)dist[i];
    printf("%lld",ans);
    return ;
}

这道题还有Tarjan缩点+DAG上DP的做法。

BZOJ2330_糖果_KEY的更多相关文章

  1. 原生js可爱糖果数字时间特效

    效果展示:http://hovertree.com/texiao/js/35/ 数字采用漂亮的糖果皮肤设计 效果图: 代码如下: <!DOCTYPE html> <html> ...

  2. UOJ #58 【WC2013】 糖果公园

    题目链接:糖果公园 听说这是一道树上莫队的入门题,于是我就去写了--顺便复习了一下莫队的各种姿势. 首先,我们要在树上使用莫队,那么就需要像序列一样给树分块.这个分块的过程就是王室联邦这道题(vfle ...

  3. [LeetCode] Candy 分糖果问题

    There are N children standing in a line. Each child is assigned a rating value. You are giving candi ...

  4. UOJ58 【WC2013】糖果公园

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  5. bzoj2330: [SCOI2011]糖果

    2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MB Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友 ...

  6. 糖果 bzoj 2330

    糖果(1s 128MB)candy [题目描述] 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明 ...

  7. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  8. Vijos P1196吃糖果游戏[组合游戏]

    描述 Matrix67和Shadow正在做一个小游戏. 桌子上放着两堆糖果,Matrix67和Shadow轮流对这些糖果进行操作.在每一次操作中,操作者需要吃掉其中一堆糖果,并且把另一堆糖果分成两堆( ...

  9. BZOJ 4548 小奇的糖果

    Description 有 \(N\) 个彩色糖果在平面上.小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果.求出最多能够拾起多少糖果,使得获得的糖果并不包含所有的颜色. Input 包含 ...

随机推荐

  1. gulp使用方法总结

    gulp是用于前端构建的基于文件流的一套工具.可以用于压缩.编译.合并.检查文件等操作.可以节省大量的用于繁琐重复操作的人力.最开始就是安装gulp工具了,在命令行中切换到工作的文件目录下,安装gul ...

  2. Python解析配置文件模块:ConfigPhaser

    算是前几周落下的博客补一篇.介绍一下python中如何解析配置文件.配置文件常用的几种格式:xml,json,还有ini.其中ini算是最简单的一种格式,因为小,解析的速度也要比xml和json快(并 ...

  3. Hive之数据类型

    Hive之数据类型   (本文是基于多篇文章根据个人理解进行的整合,参考的文章见末尾的整理) 数据类型 Hive支持两种数据类型,一类叫原子数据类型,一类叫复杂数据类型.原子数据类型包括数值型.布尔型 ...

  4. MVC学习十三:RouteDebugger插件应用

    1.下载第三方程序集RouteDebugger https://files.cnblogs.com/files/WarBlog/RouteDebugger.rar 2.把RouteDebugger程序 ...

  5. 对于dequeueReusableCellWithIdentifier:的理解

      Table Data Source Methods中的一个必要实现的方法tableView: cellForRowAtIndexPath: 中经常会包含一段代码: static NSString  ...

  6. Java 编码规范(转)

    本文转自:http://www.javaranger.com/archives/390 文章总结出了java编码过程中的一些规范,以便参考. 1.合理组织代码层次,分层清晰:controller.lo ...

  7. linux常用监测命令

    1 uptime uptime 命令可以用来查看服务器已经运行了多久,当前登录的用户有多少. 2 top top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于W ...

  8. js判断值是不是全是数字

    if(isNaN(value)){ 不是数字 }else{ 全是数字 }

  9. 一个 Safari 的 new Date() bug

    开发「bufpay.com 个人即时到账收款平台」后台套餐修改功能的时候碰到一个 new Date() bug. 既在 Safari 里面不支持 var t = new Date('2018-06-1 ...

  10. 『ACM C++』 PTA 天梯赛练习集L1 | 040-41

    近期安排 校赛3.23天梯赛3.30华工校赛 4.21省赛 5.12 ------------------------------------------------L1-040----------- ...