给一个无向图,问至少加入多少条边能够使图变成双连通图(随意两点之间至少有两条不同的路(边不同))。

图中的双连通分量不用管,所以缩点之后建新的无向无环图。

这样,题目问题等效于,把新图中度数为1的点相互连到图里面形成环

如果这种点有sum个,那么至少须要加入(sum+1)/2 条边。

下面,基本上就是求边双连通分量模板。

#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#define inf 0x3f3f3f3f
#define eps 1e-6
#define ll __int64
using namespace std;
#define N 5010
#define M 10010 struct node
{
int v,next,vis;
},e[M];
int h,head[N];
int belong[N],vis[N],dfn[N],low[N],brig[N][2],nbrig,col,cnt,top,in[N],sta[N];
int n,m; void addedge(int a,int b)
{
e[h].v=b;
e[h].vis=0;
e[h].next=head[a];
head[a]=h++;
} void tarjan(int u)
{
int v;
vis[u]=1;
dfn[u]=low[u]=++cnt;
sta[top++]=u;
for(int i=head[u];i!=-1;i=e[i].next)
{
if(e[i].vis) continue;
e[i].vis=e[i^1].vis=1;
v=e[i].v;
if(vis[v]==1)
low[u]=min(low[u],dfn[v]);
if(!vis[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])
{
brig[nbrig][0]=u;
brig[nbrig++][1]=v;
}
}
}
if(low[u]==dfn[u])
{
++col;
do
{
v=sta[--top];
vis[v]=0;
belong[v]=col;
}while(u!=v);
}
} void init()
{
memset(head,-1,sizeof head);
memset(vis,0,sizeof vis);
memset(belong,-1,sizeof belong);
h=h1=cnt=col=nbrig=top=0;
} int main()
{
int i,j,k,a,b;
while(~scanf("%d%d",&n,&m))
{
init();
for(i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
addedge(a,b);
addedge(b,a);
}
tarjan(1);
memset(in,0,sizeof in);//记度数//无向图
for(i=0;i<nbrig;i++)//缩点后 树的边是原图里的桥组成
{
a=brig[i][0];
b=brig[i][1];
if(belong[a]!=belong[b])
in[belong[a]]++,in[belong[b]]++;
}
int sum=0;
for(i=1;i<=col;i++)
if(in[i]==1) sum++;
printf("%d\n",(sum+1)/2);
}
return 0;
}

以下这个模板太龊。。

#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#define inf 0x3f3f3f3f
#define eps 1e-6
#define ll __int64
using namespace std;
#define N 1010
#define M 20010 struct node
{
int v;//下个顶点
node *next;//下个边结点
};
int n,m,r[N],d[N];//d表示缩点后各顶点的度数
node mem[M];int memp;//存储边结点
node *e[N];
int necc;//原图中边双连通分量的个数
int belong[N];
int low[N],dfn[N];
int vis[N];
int brig[M][2],nbrig; void addedge(int i,int j)
{
node *p=&mem[memp++];
p->v=j;
p->next=e[i];
e[i]=p;
} int root(int a)
{
if(a!=r[a])
r[a]=root(r[a]);
return r[a];
} void merge(int a,int b)
{
int ra=root(a);
int rb=root(b);
if(ra!=rb)
r[ra]=rb;
} void dfs(int i,int father,int dth)
{
int j,tofa=0;
node *p;
vis[i]=1;
low[i]=dfn[i]=dth;
for(p=e[i];p!=NULL;p=p->next)
{
j=p->v;
if(vis[j]&&(j!=father||tofa))
low[i]=min(low[i],dfn[j]);
if(!vis[j])
{
dfs(j,i,dth+1);
low[i]=min(low[i],low[j]);
if(low[j]<=dfn[i]) merge(i,j);//i,j在同一个双联通分量
if(low[j]>dfn[i]) //边i,j是桥
{
brig[nbrig][0]=i;
brig[nbrig++][1]=j;
}
}
if(j==father) tofa=1;
}
vis[i]=2;
} int doubleconne()
{
int i,k,ncon=nbrig=0;
dfs(0,-1,1);
for(i=0;i<n;i++)
{
k=root(i);
if(belong[k]==-1) belong[k]=ncon++;
belong[i]=belong[k];
}
return ncon;
} void init()
{
memp=nbrig=0;
memset(e,0,sizeof e);
memset(d,0,sizeof d);
for(int i=0;i<=n;i++)
r[i]=i;
memset(vis,0,sizeof vis);
memset(belong,-1,sizeof belong);
} int main()
{
int i,j,k,a,b;
while(~scanf("%d%d",&n,&m))
{
init();
for(i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
addedge(a-1,b-1);
addedge(b-1,a-1);
}
necc=doubleconne();
for(k=0;k<nbrig;k++)
{
i=brig[k][0];
j=brig[k][1];
d[belong[i]]++;
d[belong[j]]++;
}
int cnt=0;//收缩后叶子结点的个数
for(i=0;i<necc;i++)
if(d[i]==1) cnt++;
printf("%d\n",(cnt+1)/2);
}
return 0;
}

poj3177 Redundant Paths 边双连通分量的更多相关文章

  1. POJ3177 Redundant Paths【双连通分量】

    题意: 有F个牧场,1<=F<=5000,现在一个牧群经常需要从一个牧场迁移到另一个牧场.奶牛们已经厌烦老是走同一条路,所以有必要再新修几条路,这样它们从一个牧场迁移到另一个牧场时总是可以 ...

  2. POJ3177 Redundant Paths —— 边双联通分量 + 缩点

    题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total ...

  3. [POJ3177]Redundant Paths(双联通)

    在看了春晚小彩旗的E技能(旋转)后就一直在lol……额抽点时间撸一题吧…… Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  4. [POJ3177]Redundant Paths(双连通图,割边,桥,重边)

    题目链接:http://poj.org/problem?id=3177 和上一题一样,只是有重边. 如何解决重边的问题? 1.  构造图G时把重边也考虑进来,然后在划分边双连通分量时先把桥删去,再划分 ...

  5. poj 3177 Redundant Paths(边双连通分量+缩点)

    链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...

  6. POJ3177 Redundant Paths 双连通分量

    Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  7. POJ3177 Redundant Paths(边双连通分量+缩点)

    题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...

  8. poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解

    题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...

  9. POJ3177 Redundant Paths 图的边双连通分量

    题目大意:问一个图至少加多少边能使该图的边双连通分量成为它本身. 图的边双连通分量为极大的不存在割边的子图.图的边双连通分量之间由割边连接.求法如下: 求出图的割边 在每个边双连通分量内Dfs,标记每 ...

随机推荐

  1. hdu 1531 king(差分约束)

    King Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  2. [BZOJ3131] [Sdoi2013]淘金

    [BZOJ3131] [Sdoi2013]淘金 Description 小Z在玩一个叫做<淘金者>的游戏.游戏的世界是一个二维坐标.X轴.Y轴坐标范围均为1..N.初始的时候,所有的整数坐 ...

  3. hdu 4071& poj 3873 & zoj 3386 & uva 12197 Trick or Treat 三分法

    思路: 看到这个题目就发现所需最短时间也就是房子和相遇点的最远距离具有凹凸性,很容易就想到了三分法枚举. 找出所有房子的X坐标的最小最大值作为上下界. 代码如下: #include<stdio. ...

  4. JDK源码学习笔记——TreeMap及红黑树

    找了几个分析比较到位的,不再重复写了…… Java 集合系列12之 TreeMap详细介绍(源码解析)和使用示例 [Java集合源码剖析]TreeMap源码剖析 java源码分析之TreeMap基础篇 ...

  5. 1.3(SQL学习笔记)计算字段及函数

    一.计算字段 1.1拼接字段 一般情况下返回的字段是指定列的属性名.如果有时我们对返回格式有特殊要求. 例如,我们需要将显示商品名,即商品价格,同时商品名后面的价格放在括号内. prod_name(p ...

  6. Problem G: 十进制数转换为二进制数

    #include<stdio.h> int main() { ]; while(scanf("%d",&n)!=EOF) { ; ) { a[i++]=n%; ...

  7. Trie 图

    时间限制:20000ms 单点时限:1000ms 内存限制:512MB 描述 前情回顾 上回说到,小Hi和小Ho接受到了河蟹先生伟大而光荣的任务:河蟹先生将要给与他们一篇从互联网上收集来的文章,和一本 ...

  8. Linux命令之sync - 强制将内存中的文件缓冲内容写到磁盘

    转:http://www.linuxso.com/command/sync.html sync命令 linux同步数据命令 格式: sync 用途:更新 i-node 表,并将缓冲文件写到硬盘中. 功 ...

  9. linux UART串口驱动开发文档

    转:http://www.360doc.com/content/10/0417/18/829197_23519037.shtml linux UART串口驱动开发文档时间:2010-01-09 14: ...

  10. PVS-Studio静态通用分析规则

    通用分析 PVS - Studio产品包含了一套通用静态分析规则,用于检测在C / C ++/ C+11应用程序中大范围内的各种缺陷. 通用的规则集帮助您发现逻辑错误,拼写错误,导致访问冲突的代码片段 ...