题意:给定$a_{1\cdots n}$和$p$,多次询问$\prod\limits_{i=l}^ra_i$对$p$取模的值,强制在线,每次询问要求$O(1)$回答

一个微小的黑科技...

静态区间查询,可以想到ST表,但ST表的区间会互相覆盖,不能满足这题的要求,也不能前缀和因为$p$可能不是质数

于是我们有一个类似ST表的技术

设$A_{k,i}=\prod\limits_{j=\left\lfloor\frac i{2^k}\right\rfloor2^k}^ia_j,B_{k,i}=\prod\limits_{j=i}^{\left\lceil\frac{i+1}{2^k}\right\rceil2^k-1}a_j$

$A_{k,i}$表示的是($\leq i$的最大的$2^k$的倍数)到$i$这一段数的乘积,$B_{k,i}$表示的是$i$到($\gt i$的最小的$2^k$的倍数$-1$)这一段数的乘积,这两个都可以$O(n\log_2n)$预处理

对于询问$[l,r]$,如果$l=r$那么答案就是$a_l$,下面讨论$l\lt r$的情况

如果我们可以找到一个$k$,使得$[l+1,r]$中只有一个$2^k$的倍数,那么$B_{k,l}A_{k,r}$就是答案

容易验证一个满足要求的$k$就是$\log_2\left(\text{highbit}(r\text{ xor }l)\right)$,然后这题就做完了...

#include<stdio.h>
typedef long long ll;
void swap(int&a,int&b){a^=b^=a^=b;}
int p;
int mul(int a,int b){return a*(ll)b%p;}
int a[1000010],b[320010],hb[1048577],A[20][1000010],B[20][1000010];
int query(int l,int r){
	if(l==r)return a[l]%p;
	int k=hb[l^r];
	return mul(B[k][l],A[k][r]);
}
int up(int x,int k){
	return(x&((1<<k)-1))==0?x>>k:(x>>k)+1;
}
void work(){
	int n,q,i,j,l,r,x;
	scanf("%d%d%d",&n,&p,&q);
	for(i=0;i<n;i++)scanf("%d",a+i);
	for(i=0;i<n;i++)A[0][i]=B[0][i]=a[i];
	for(j=1;1<<j<n;j++){
		for(i=0;i<n;i++)A[j][i]=mul(a[i],i>>j<<j==i?1:A[j][i-1]);
		B[j][n]=1;
		for(i=n-1;i>=0;i--)B[j][i]=mul(a[i],(up(i+1,j)<<j)-1==i?1:B[j][i+1]);
		hb[1<<j]=j;
	}
	hb[1<<j]=j;
	j=1<<j;
	for(i=1;i<j;i++){
		if(!hb[i])hb[i]=hb[i-1];
	}
	for(i=0;i<q/64+2;i++)scanf("%d",b+i);
	x=0;
	for(i=0;i<q;i++){
		if((i&63)==0){
			l=(b[i>>6]+x)%n;
			r=(b[(i>>6)+1]+x)%n;
		}else{
			l=(l+x)%n;
			r=(r+x)%n;
		}
		if(l>r)swap(l,r);
		x=(query(l,r)+1)%p;
	}
	printf("%d\n",x);
}
int main(){
	int T;
	scanf("%d",&T);
	while(T--)work();
}

[CODECHEF]SEGPROD的更多相关文章

  1. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  2. 【BZOJ4260】 Codechef REBXOR 可持久化Trie

    看到异或就去想前缀和(⊙o⊙) 这个就是正反做一遍最大异或和更新答案 最大异或就是很经典的可持久化Trie,从高到低贪心 WA: val&(1<<(base-1))得到的并不直接是 ...

  3. codechef 两题

    前面做了这场比赛,感觉题目不错,放上来. A题目:对于数组A[],求A[U]&A[V]的最大值,因为数据弱,很多人直接排序再俩俩比较就过了. 其实这道题类似百度之星资格赛第三题XOR SUM, ...

  4. codechef January Challenge 2014 Sereja and Graph

    题目链接:http://www.codechef.com/JAN14/problems/SEAGRP [题意] 给n个点,m条边的无向图,判断是否有一种删边方案使得每个点的度恰好为1. [分析] 从结 ...

  5. BZOJ3509: [CodeChef] COUNTARI

    3509: [CodeChef] COUNTARI Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 339  Solved: 85[Submit][St ...

  6. CodeChef CBAL

    题面: https://www.codechef.com/problems/CBAL 题解: 可以发现,我们关心的仅仅是每个字符出现次数的奇偶性,而且字符集大小仅有 26, 所以我们状态压缩,记 a[ ...

  7. CodeChef FNCS

    题面:https://www.codechef.com/problems/FNCS 题解: 我们考虑对 n 个函数进行分块,设块的大小为S. 每个块内我们维护当前其所有函数值的和,以及数组中每个元素对 ...

  8. codechef Prime Distance On Tree(树分治+FFT)

    题目链接:http://www.codechef.com/problems/PRIMEDST/ 题意:给出一棵树,边长度都是1.每次任意取出两个点(u,v),他们之间的长度为素数的概率为多大? 树分治 ...

  9. BZOJ 3221: [Codechef FEB13] Obserbing the tree树上询问( 可持久化线段树 + 树链剖分 )

    树链剖分+可持久化线段树....这个一眼可以看出来, 因为可持久化所以写了标记永久化(否则就是区间修改的线段树的持久化..不会), 结果就写挂了, T得飞起...和管理员拿数据调后才发现= = 做法: ...

随机推荐

  1. Jquery checkbox 遍历

    checkbox 全选\全部取消 $("#ChkAll").click(function(){    $("#divContent input[type='checkbo ...

  2. 檢查 cpu 的全部 gpio 狀態及設定

    $ adb root # cat /sys/kernel/debug/gpio

  3. python基础===成员访问__len__()和__getitem__()

    class A: def __init__(self,*args): self.name = arg pass def __len__(self): return len(self.name) a = ...

  4. java===编译引用第三方文件的类(原创)

    http://blog.csdn.net/m53931422/article/details/42174609 http://blog.csdn.net/u012450329/article/deta ...

  5. (二十)ubuntu的recovery mode解决用户一些实际问题

    遇到的问题如下: 1.在当前用户下使用sudo来直接修改password等几个文件,一旦修改了passwd,用户名发生了变化,其他的用户组.密码等却没有对应的配置,就再进不了该用户了. 2.忘记用户密 ...

  6. 【hihocoder】sam-2

    原意是把sam那一堆做完…… 这题还是很sb的,$\sum{maxlen(s)-minlen(s)+1}$就是本质不同的子串数量 然后因为suffix link的性质,maxlen[fa[s]]=mi ...

  7. 经典卷积网络模型 — VGGNet模型笔记

    一.简介 VGGNet是计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研究的深度卷积神经网络.VGGNet探索了卷积神经网络深度与性能之间的 ...

  8. FineReport——JS二次开发(局部刷新)

    在FR中,可以通过在form表单设置多个报表模板,然后通过对某一模板刷新实现局部刷新的功能,在cpt模板中,由于只存在一个模板,所以无法实现局部刷新. 其实,最好的局部刷新办法是自定义一个页面,然后添 ...

  9. [路由] -- Yii2 url地址美化与重写

    转载:http://blog.csdn.net/lmjy102/article/details/53857520

  10. Leetcode 之Flatten Binary Tree to Linked List(50)

    将左子树接到右子树之前,递归解决 void flatten(TreeNode *root) { if (root == nullptr)return; flatten(root->left); ...