2654: tree

Time Limit: 30 Sec  Memory Limit: 512 MB
Submit: 2733  Solved: 1124
[Submit][Status][Discuss]

Description

给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
题目保证有解。

Input

第一行V,E,need分别表示点数,边数和需要的白色边数。
接下来E行,每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色)。

Output

一行表示所求生成树的边权和。
V<=50000,E<=100000,所有数据边权为[1,100]中的正整数。

Sample Input

2 2 1
0 1 1 1
0 1 2 0

Sample Output

2

HINT

原数据出错,现已更新 by liutian,但未重测---2016.6.24

Source

 

[Submit][Status][Discuss]

一种叫WQS二分的思想,据说[九省联考2018]林克卡特树用到了这个东西。

tsinsen.com/resources/Train2012-sol-wqs.pdf

但是这道题不看论文也可以直接做,将每条白边加上x后求MST,设树上的白边的个数为f(x),可以确定f(x)是单调不增的,二分即可。

但可能f(mid)>k,f(mid+1)<k,我们把相同长度的白边放在黑边的前面即可。

https://www.cnblogs.com/NaVi-Awson/p/7252243.html

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
int n,m,cnt,tot,k,ans,u[N],v[N],w[N],c[N],fa[N];
struct E{ int u,v,w,c; }e[N]; bool operator<(E a,E b){ return a.w==b.w ? a.c<b.c : a.w<b.w; }
int find(int x){ return x==fa[x] ? x : fa[x]=find(fa[x]); } bool check(int x){
tot=cnt=;
rep(i,,n) fa[i]=i;
rep(i,,m){
e[i].u=u[i]; e[i].v=v[i]; e[i].w=w[i]; e[i].c=c[i];
if(!c[i])e[i].w+=x;
}
sort(e+,e+m+);
rep(i,,m){
int p=find(e[i].u),q=find(e[i].v);
if(p!=q){
fa[p]=q; tot+=e[i].w;
if (!e[i].c) cnt++;
}
}
return cnt>=k;
} int main(){
scanf("%d%d%d",&n,&m,&k);
rep(i,,m) scanf("%d%d%d%d",&u[i],&v[i],&w[i],&c[i]),u[i]++,v[i]++;
int L=-,R=;
while(L<=R){
int mid=(L+R)>>;
if(check(mid)) L=mid+,ans=tot-k*mid; else R=mid-;
}
printf("%d\n",ans);
return ;
}

[BZOJ2654]tree(二分+Kruskal)的更多相关文章

  1. [BZOJ2654]:tree(Kruskal+WQS二分)

    题目传送门 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. 输入格式 开始标号),边权,颜色(0白色1黑色). 输出格式 一行表 ...

  2. [bzoj2654] tree 最小生成树kruskal+二分

    题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. 输入格式 第一行V,E,need分别表示点数,边数和需要的白色边数.接下来E行, ...

  3. bzoj 2654 tree 二分+kruskal

    tree Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 2739  Solved: 1126[Submit][Status][Discuss] Des ...

  4. BZOJ2654: tree 二分答案+最小生成树

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  5. 2021.07.19 BZOJ2654 tree(生成树)

    2021.07.19 BZOJ2654 tree(生成树) tree - 黑暗爆炸 2654 - Virtual Judge (vjudge.net) 重点: 1.生成树的本质 2.二分 题意: 有一 ...

  6. [BZOJ2654] tree (kruskal & 二分答案)

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  7. 【BZOJ2654】tree 二分+最小生成树

    [BZOJ2654]tree Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need ...

  8. 洛谷.2619.[国家集训队2]Tree I(带权二分 Kruskal)

    题目链接 \(Description\) 给定一个无向带权连通图,每条边是黑色或白色.求一棵最小权的恰好有K条白边的生成树. \(Solution\) Kruskal是选取最小的n-1条边.而白边数有 ...

  9. [BZOJ2654]tree(二分+MST)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2654 分析:此题很奇葩,我们可以给所有白边加上一个权值mid,那么在求得的MST中白边 ...

随机推荐

  1. js常用模板引擎

    baiduTemplate(百度).artTemplate(腾讯).juicer(淘宝).xtemplate.doT.Jade 1.Handlebars 是 JavaScript 一个语义模板库,通过 ...

  2. Tomcat的安装以及基本配置

    Tomcat是目前最常见也是最流行的基于java的一个web服务器软件   Tomcat的安装   (1)首先需要java环境,也就是说要依赖于java虚拟机JVM   (2)下载Tomcat ,地址 ...

  3. It is possible that this issue is resolved by uninstalling an existi

    使用真机连接Android Studio测试时出现这样的错误: 解决方法: 设置Android Studio 中Instant Run中的选项为不选中 根据以下路径,找到Instant Run中的选项 ...

  4. 设计模式之Prototype

    设计模式总共有23种模式这仅仅是为了一个目的:解耦+解耦+解耦...(高内聚低耦合满足开闭原则) 介绍: 用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象. 为什么要用Prototype ...

  5. 修改ES使用root用户运行

    默认ES不允许使用root用户运行,如果使用root会报如下图的错误: ,通常建议创建elsearch用户并使用该用户运行ES.但如果必须使用root用户时,按如下设置即可: 1.启动是使用如下命令 ...

  6. bzoj 1854 游戏 二分图匹配 || 并查集

    题目链接 Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的 ...

  7. CTF两个经典的文件包含案例

    案例一URL:http://120.24.86.145:8003/代码 <?php include "waf.php"; include "flag.php&quo ...

  8. Python阶段复习 - part 3 - Python函数

    利用函数打印9*9乘法表 def cheng(num): for i in range(1,num+1): for j in range(1,i+1): print('{0} * {1} = {2}' ...

  9. Python3 面向对象编程高级语法

    1.静态方法: #!/usr/bin/env python # _*_ coding:utf-8 _*_ # Author:CarsonLi class Dog(object): def __init ...

  10. Keil MDK 5.14 仿真时System Viewer菜单显示空白和Peripherals菜单无外设寄存器

    keil mdk5.14新建工程进行仿真时,进入Debug环境发现System Viewer菜单显示空白,Peripherals菜单没有外设寄存器.如图1和图2所示.打开Oprons for Targ ...