http://www.cnblogs.com/denny402/p/5852983.html

ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试

 

刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。

神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。

数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。借用极客学院的图表示如下:

其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下:

在训练过程中,我们将真实的结果和预测的结果相比(交叉熵比较法),会得到一个残差。公式如下:

y 是我们预测的概率值, y' 是实际的值。这个残差越小越好,我们可以使用梯度下降法,不停地改变W和b的值,使得残差逐渐变小,最后收敛到最小值。这样训练就完成了,我们就得到了一个模型(W和b的最优化值)。

完整代码如下:

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_actual = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10])) #初始化权值W
b = tf.Variable(tf.zeros([10])) #初始化偏置项b
y_predict = tf.nn.softmax(tf.matmul(x,W) + b) #加权变换并进行softmax回归,得到预测概率
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_actual*tf.log(y_predict),reduction_indies=1)) #求交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #用梯度下降法使得残差最小 correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1)) #在测试阶段,测试准确度计算
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #多个批次的准确度均值 init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for i in range(1000): #训练阶段,迭代1000次
batch_xs, batch_ys = mnist.train.next_batch(100) #按批次训练,每批100行数据
sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys}) #执行训练
if(i%100==0): #每训练100次,测试一次
print "accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels})

每训练100次,测试一次,随着训练次数的增加,测试精度也在增加。训练结束后,1W行数据测试的平均精度为91%左右,不是太高,肯定没有CNN高。

ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试的更多相关文章

  1. tensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试

    刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输 ...

  2. 官网实例详解-目录和实例简介-keras学习笔记四

    官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras   版权声明: ...

  3. ZooKeeper学习笔记四:使用ZooKeeper实现一个简单的分布式锁

    作者:Grey 原文地址: ZooKeeper学习笔记四:使用ZooKeeper实现一个简单的分布式锁 前置知识 完成ZooKeeper集群搭建以及熟悉ZooKeeperAPI基本使用 需求 当多个进 ...

  4. C#可扩展编程之MEF学习笔记(四):见证奇迹的时刻

    前面三篇讲了MEF的基础和基本到导入导出方法,下面就是见证MEF真正魅力所在的时刻.如果没有看过前面的文章,请到我的博客首页查看. 前面我们都是在一个项目中写了一个类来测试的,但实际开发中,我们往往要 ...

  5. Directx11学习笔记【一】 最简单的windows程序HelloWin

    声明:本系列教程代码有部分来自dx11龙书及dx11游戏编程入门两本书,后面不再说明 首先,在vs2013中创建一个空的解决方案Dx11Demo,以后的工程都会放在这个解决方案下面.然后创建一个win ...

  6. Typescript 学习笔记四:回忆ES5 中的类

    中文网:https://www.tslang.cn/ 官网:http://www.typescriptlang.org/ 目录: Typescript 学习笔记一:介绍.安装.编译 Typescrip ...

  7. IOS学习笔记(四)之UITextField和UITextView控件学习

    IOS学习笔记(四)之UITextField和UITextView控件学习(博客地址:http://blog.csdn.net/developer_jiangqq) Author:hmjiangqq ...

  8. java之jvm学习笔记四(安全管理器)

    java之jvm学习笔记四(安全管理器) 前面已经简述了java的安全模型的两个组成部分(类装载器,class文件校验器),接下来学习的是java安全模型的另外一个重要组成部分安全管理器. 安全管理器 ...

  9. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

随机推荐

  1. jekins部署

    以下以在MAC上安装为例: 1.从官网下载安装包 https://jenkins.io/download 2.双击pkg包安装程序开始安装.(这种方式安装的不好卸载) 提示输入密码,按照提示的路径找到 ...

  2. uboot if_changed函数

    u-boot编译过程分析 u-boot.lds: $(LDSCRIPT) prepare FORCE $(call if_changed_dep,cpp_lds) u-boot: $(u-boot-i ...

  3. linux 性能分析常用命令汇总

    CPU性能分析工具: vmstatpssartimestracepstreetop Memory(内存)性能分析工具:vmstatstracetopipcsipcrmcat /proc/meminfo ...

  4. Spring Boot整合Mybatis出现错误java.lang.IllegalStateException: Cannot load driver class:com.mysql.cj.jdbc.Driver

    错误描述: Caused by: java.lang.IllegalStateException: Cannot load driver class: com.mysql.cj.jdbc.Driver ...

  5. 推荐一些CSS命名规范

    常用的CSS命名规则 头:header内容:content/container尾:footer导航:nav侧栏:sidebar栏目:column页面外围控制整体佈局宽度:wrapper左右中:left ...

  6. 如何在MySQL中使用explain查询SQL的执行计划?

    1.什么是MySQL执行计划 要对执行计划有个比较好的理解,需要先对MySQL的基础结构及查询基本原理有简单的了解. MySQL本身的功能架构分为三个部分,分别是 应用层.逻辑层.物理层,不只是MyS ...

  7. NPM错误

    有时突然报下面错误: 本人经验是IP变了...

  8. springboot-mybatis-demo遇到的坑

    目录 前言 问题&解决 1.初始化Maven工程过慢 2.Spring Boot 集成druid时时区问题和连接超时问题 3.完整工程下载 前言 环境: java version " ...

  9. Laya 首日红点逻辑

    Laya 首日红点逻辑 @author ixenos 2019-08-26 10:50:27 1.原理:显然,首日红点意味着包含进程销毁的情况,那么就要持久化存储信息,这里我们使用LocalStora ...

  10. 使用 Markdown 写博客

    后台设置(左侧边栏区找到-设置默认编辑器). 设置为 Markdown 后保存,即可在编辑新博客时生效.