[CF938E]Max History题解
解法
显而易见,对于一个数\(a_i\),若果它出现在\(f\)序列中,必定\(a_i\)之前的元素要小于\(a_i\),我们设\(cnt_i\)为序列\(a\)中小于\(i\)的元素,
那么得到\(\sum_{i=1}^n a_i \times (\sum_{j=1}^{cnt_i+1} \frac{cnt_i!}{(j-1)!\times(cnt_i-j+1)!} \times (j - 1)! \times (n-j)!)\)
化简得\(\sum_{i=1}^n a_i \times (\sum_{j=1}^{cnt_i+1} \frac{cnt_i!}{(cnt_i-j+1)!} \times (n-j)!)\)
然后提出\(cnt_i!\)得\(\sum_{i=1}^n a_i \times cnt_i! \times ( \sum_{j=1}^{cnt_i+1} \frac{(n-j)!}{(cnt_i-j+1)!})\)
提取一个\((n-cnt_i-1)!\)得\(\sum_{i=1}^n a_i \times cnt_i! \times (n-cnt_i-1) \times ( \sum_{j=1}^{cnt_i+1} (^{n-j}_{n-cnt_i-1}))\)
又可得\(\sum_{i=1}^n a_i \times cnt_i! \times (n-cnt_i-1) \times (^n_{n-cnt_i})\)
所以答案为\(\sum_{i=1}^n \frac{a_i*n!}{n-l_i}\)
代码
#include <cstdio>
#include <algorithm>
#define ll long long
#define MOD 1000000007
using namespace std;
ll jc[1000005], jcr[1000005];
ll a[1000005];
int main(){
int n; scanf("%d", &n);
for(ll i = 1; i <= n; ++i)
scanf("%lld", &a[i]);
jc[0] = jcr[n + 1] = 1;
for(int i = 1; i <= n + 1; ++i)
jc[i] = (jc[i - 1] * i) % MOD;
for(int i = n; i >= 1; --i)
jcr[i] = (jcr[i + 1] * i) % MOD;
sort(a + 1, a + n + 1);
ll ans = 0; int cur_val = 0, cnt = 0;
for(int i = 1; a[i] != a[n]; ++i){
(a[i] == a[i - 1]) ? (++cnt) : (cur_val += cnt, cnt = 1);
ans += (((jc[n - cur_val - 1] * jcr[n - cur_val + 1]) % MOD) * a[i]) % MOD, ans %= MOD;
}
printf("%lld", ans); return 0;
}
[CF938E]Max History题解的更多相关文章
- 【计数】cf938E. Max History
发现有一种奇怪的方法不能快速预处理? 复习一下常见的凑组合数的套路 You are given an array a of length n. We define fa the following w ...
- CodeForces 938E Max History 题解
参考自:https://blog.csdn.net/dreaming__ldx/article/details/84976834 https://blog.csdn.net/acterminate/a ...
- Hdoj 1003.Max Sum 题解
Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum ...
- Codeforces 938E Max History:排列 + 逆元【考虑单个元素的贡献】
题目链接:http://codeforces.com/problemset/problem/938/E 题意: 定义f(a): 初始时f(a) = 0, M = 1. 枚举i = 2 to n,如果a ...
- luoguP3128 [USACO15DEC]最大流Max Flow 题解(树上差分)
链接一下题目:luoguP3128 [USACO15DEC]最大流Max Flow(树上差分板子题) 如果没有学过树上差分,抠这里(其实很简单的,真的):树上差分总结 学了树上差分,这道题就极其显然了 ...
- 2018.12.12 codeforces 938E. Max History(组合数学)
传送门 唉最开始居然把题给看错了. 其实是组合数学傻逼题呢. 题意简述:给出一个数列,定义一个与数列有关的fff函数,fff函数定义如下: 首先f=0,M=1f=0,M=1f=0,M=1,一直重复如下 ...
- Max History CodeForces - 938E (组合计数)
You are given an array a of length n. We define fa the following way: Initially fa = 0, M = 1; for e ...
- CF1083C Max Mex 线段树
题面 CF1083C Max Mex 题解 首先我们考虑,如果一个数x是某条路径上的mex,那么这个数要满足什么条件? 1 ~ x - 1的数都必须出现过. x必须没出现过. 现在我们要最大化x,那么 ...
- Educational Codeforces Round 38 部分题解
D. Buy a Ticket 分析 建一个源点,连向所有结点,边的花费为那个结点的花费,图中原有的边花费翻倍,最后跑一遍最短路即可. code #include<bits/stdc++.h&g ...
随机推荐
- LeetCode.860-卖柠檬水找零(Lemonade Change)
这是悦乐书的第331次更新,第355篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第201题(顺位题号是860).在柠檬水摊上,每杯柠檬水的价格为5美元.客户站在队列中向 ...
- redis学习(二)
深入了解redis字符串,列表,散列和有序集合命令,了解发布,订阅命令和其他命令. 一,字符串 1.字符串可以存储3种类型的值 字符串,整数,浮点数 2.运算命令列表 incr : incr ...
- python+selenium上传文件——input标签
我们要区分出上传按钮的种类,大体上可以分为两种: 第一种普通上传:将本地文件路径作为一个值,放在input标签中,通过form表单将这个值提交给服务器: 第二种插件上传:是通过Flash.JavaSc ...
- python+selenium元素定位之XPath学习02
XPath 语法 XPath 使用路径表达式来选取 XML 文档中的节点或节点集.节点是通过沿着路径 (path) 或者步 (steps) 来选取的. XML 实例文档 我们将在下面的例子中使用这个 ...
- HTTPS测试
1.首先理解HTTPS的含义,清楚http与HTTPS的区别 2.相对于http而言,https更加安全,因 3.使用数字证书使传输更安全,数字证书使用keytool工具生成 测试准备: 创建公钥和秘 ...
- eclipse 或 STS 卸载SVN 插件
help菜单 ==> about eclipse ==>install details按钮 ==> installed software选项卡 选中下面的这几项,点击 uni ...
- java8--- Predicate 意义 代码
//为了去除 DiyInterface 这个函数式接口,可以用通用函数式接口 Predicate 替代如下: https://blog.csdn.net/u011848397/article/deta ...
- 中标麒麟(linux)mysql配置记录
刚装好mysql时,使用正常,后来再次使用时,连接不成功.(虚拟机中) 配置网络有问题, 1.我将ifcfg-*的两个文件备份后删除了. 2.点击右下角的小电脑,重新新建一个网络连接.把网络接入主机的 ...
- 在Myeclipse下查看Java字节码指令信息
在实际项目开发中,有时为了了解Java编译器内部的一些工作,需要查看Java文件对应的具体的字节码指令集,这里提供两种方式供参考. 一.使用javap命令 javap是JDK提供的 ...
- 剑指offer-用两个栈来实现一个队列-队列与栈-python
用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 思路:使用两个栈,stackA 用来接收node stackB 用来接收 stackA 的出栈 # -*- cod ...