——关于博弈论

四道例题带你走进博弈论~

  (考虑必败态,必胜态)

Ps:要理解这种思想,首先要明白什么叫必败态。说简单点,必败态就是“在对方使用最优策略时,无论做出什么决策都会导致失败的局面”。其他的局面称为胜态,值得注意的是在胜态下做出错误的决策也有可能导致失败。此类博弈问题的精髓就是让对手永远面对必败态。 必败态和胜态有着如下性质: 1、若面临末状态者为获胜则末状态为胜态否则末状态为必败态。 2、一个局面是胜态的充要条件是该局面进行某种决策后会成为必败态。 3、一个局面是必败态的充要条件是该局面无论进行何种决策均会成为胜态 这三条性质正是博弈树的原理,但博弈树是通过计算每一个局面是胜态还是必败态来解题,这样在局面数很多的情况下是很难做到的,此时,我们可以利用人脑的推演归纳能力找到必败态的共性,就可以比较好的解决此类问题了。

1)

基准时间限制:1 秒 空间限制:131072 KB 
 
有一堆石子共有N个。A B两个人轮流拿,A先拿。每次最少拿1颗,最多拿K颗,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N和K,问最后谁能赢得比赛。
例如N = 3,K = 2。无论A如何拿,B都可以拿到最后1颗石子。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数N,K。中间用空格分隔。(1 <= N,K <= 10^9)
Output
共T行,如果A获胜输出A,如果B获胜输出B。
Input示例
4
3 2
4 2
7 3
8 3
Output示例
B
A
A
B
思路:
  因为只有拿到最后一块石子才能够胜利,所以如果考虑n是否能够被k+1整除
  Eg:若n被整除(Eg中设k<n<2*k)
  A若首先取k块,还剩下一块,B拿走,B胜利
  首先取1块,那么也刚好能被B取走,B胜利
  其余情况类似,所以我们只需判断n是否能够被k+1整除即可
 
代码:
#include <iostream>
#include <cstdio> using namespace std; int n,k,t; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
if(n<k)///此时需要特判n是否比k大
{///如果小于,A获胜(可以自己试试)
printf("A\n");
continue;
}
else
{
if(n%(k+)==)
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
}
return ;
}

1

2)

基准时间限制:1 秒 空间限制:131072 KB 
 
有一堆石子共有N个。A B两个人轮流拿,A先拿。每次只能拿1,3,4颗,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N,问最后谁能赢得比赛。
例如N = 2。A只能拿1颗,所以B可以拿到最后1颗石子。
 
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^9)
Output
共T行,如果A获胜输出A,如果B获胜输出B。
Input示例
3
2
3
4
Output示例
B
A
A
思路:
  通过枚举得出循环
     ABAAAAB(7位)
  这个序列,所以只要判断是否%7==2或0即可
代码:
#include <iostream>
#include <cstdio> using namespace std; int n,k,t; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
if(n%== || n%==)///规律
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
return ;
}

2

3)
题目来源: Ural 1180
基准时间限制:1 秒 空间限制:131072 KB 
 
有一堆石子共有N个。A B两个人轮流拿,A先拿。每次拿的数量只能是2的正整数次幂,比如(1,2,4,8,16....),拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N,问最后谁能赢得比赛。
例如N = 3。A只能拿1颗或2颗,所以B可以拿到最后1颗石子。(输入的N可能为大数)
 
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^1000)
Output
共T行,如果A获胜输出A,如果B获胜输出B。
Input示例
3
2
3
4
Output示例
A
B
A
思路:
  同找规律得出   AAB   序列3个一循环,所以只要判断是否能够被3整除即可.
  但是因为数据范围太大,所以需要加些处理,利用3的倍数小性质
代码:
#include <iostream>
#include <cstdio> using namespace std; long long t,wsum;
string n; int main()
{
scanf("%lld",&t);
int len;
for(int i=;i<=t;i++)
{
cin>>n;
wsum=;///清零!!!
len=n.length();
for(int j=;j<len;j++) wsum+=n[j]-'';
if(wsum%==)
{
printf("B\n");
continue;
}
else
{
printf("A\n");
continue;
}
}
return ;
}

3

4)
基准时间限制:1 秒 空间限制:131072 KB 
 
有一堆石子共有N个。A B两个人轮流拿,A先拿。每次拿的数量最少1个,最多不超过对手上一次拿的数量的2倍(A第1次拿时要求不能全拿走)。拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N,问最后谁能赢得比赛。
例如N = 3。A只能拿1颗或2颗,所以B可以拿到最后1颗石子。
 
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^9)
Output
共T行,如果A获胜输出A,如果B获胜输出B。
Input示例
3
2
3
4
Output示例
B
B
A
思路:
  找规律得当n为斐波那契数列时A必败,所以预处理一下f数组存放斐波那契数列,判断是否出现过,然后弹出条件是,当当前枚举到的数大于输入的数时,跳出并输出A胜利.
代码:
#include <iostream>
#include <cstdio> using namespace std; const int M = ;
int t;
int f[M]; int main()
{
f[]=f[]=;
for(int i=;i<=M;i++)
f[i]=f[i-]+f[i-];
scanf("%d",&t);
bool flag;
int q;
while(t--)
{
flag=false;///清除标记
scanf("%d",&q);
for(int i=;i<=q;i++)
{
if(f[i]==q)
{
printf("B\n");
break;
}
else if(f[i]>q)
{
flag=true;
break;
}
}
if(flag) printf("A\n");
}
return ;
}

4

 
End.

博弈论 x的更多相关文章

  1. IT人生知识分享:博弈论的理性思维

    背景: 昨天看了<最强大脑>,由于节目比较有争议性,不知为什么,作为一名感性的人,就想试一下如果自己理性分析会是怎样的呢? 过程是这样的: 中国队(3人)VS英国队(4人). 1:李建东( ...

  2. [poj2348]Euclid's Game(博弈论+gcd)

    Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Des ...

  3. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  4. TYVJ博弈论

    一些比较水的博弈论...(为什么都没有用到那什么SG呢....) TYVJ 1140  飘飘乎居士拯救MM 题解: 歌德巴赫猜想 #include <cmath> #include < ...

  5. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. 【POJ】2234 Matches Game(博弈论)

    http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论 ...

  7. 博弈论入门小结 分类: ACM TYPE 2014-08-31 10:15 73人阅读 评论(0) 收藏

    文章原地址:http://blog.csdn.net/zhangxiang0125/article/details/6174639 博弈论:是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策 ...

  8. poj 3710 Christmas Game 博弈论

    思路:首先用Tarjan算法找出树中的环,环为奇数变为边,为偶数变为点. 之后用博弈论的知识:某点的SG值等于子节点+1后的异或和. 代码如下: #include<iostream> #i ...

  9. hdoj 1404 Digital Deletions(博弈论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1404 一看就是博弈论的题目,但并没有什么思路,看了题解,才明白 就是求六位数的SG函数,暴力一遍,打表 ...

  10. CodeForces 455B A Lot of Games (博弈论)

    A Lot of Games 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/J Description Andrew, Fedo ...

随机推荐

  1. Scratch少儿编程系列:(六)诗词《从军行》赏析

    一.程序说明 本程序用来显示<从军行>诗词,逐字显示.本来计划用2.0制作,但在制作过程中,在“造型”中无法输入汉字,临时采用3.0版本,1.4版本也可以. 二.程序流程图 为了更直观的描 ...

  2. ElasticSearch Machine Learning

    https://www.youtube.com/watch?v=DBRISS0UKcA, 2017/04 Single Metric job: 我想按照 一定的time interval 去 aggr ...

  3. python+selenium下弹窗alter对象处理02

    首先使用switch_to.alert()方法进行定位,然后可以使用下面的操作 text:返回alert.confirm.prompt中的文字信息: accept():接受现有警告框: dismiss ...

  4. Windows 下安装 ElasticSearch 修改 elasticsearch.yml的坑

    注意:  ElasticSerach 集成 IK分词器 的时候,整个路径不能有空格!!! 1. 文件后加入 严格复制粘贴,否则入坑 http.cors.enabled : true http.cors ...

  5. java通过正则进行语法分析实现表达式的逻辑判断和复杂计算实现

    首先功能展示: 相关功能实现,实现功能类似js,弱语言类型: 1.核销语法解析使用正则校验和匹配实现处理,每一行是一个完整表达式 2.有系统变量使用,内置的变量可直接获取值进行相关逻辑和条件计算 3. ...

  6. 几个 BeanUtils 中的坑,千万别踩!

    背景 最近项目中在和第三方进行联调一个接口,我们这边发送http请求给对方,然后接收对方的回应,代码都是老代码. 根据注释,对方的SDK中写好的Request类有一个无法序列化的bug,所以这边重新写 ...

  7. 小白学Python(19): Pyinstaller 生成 exe 文件

    python 默认并不包含 PyInstaller 模块,因此需要自行安装 PyInstaller 模块. 安装 PyInstaller 模块与安装其他 Python 模块一样,使用 pip 命令安装 ...

  8. tcp和udp详解??

    TCP:面向连接的可靠传输 tcp规定了:传输服务必须建立连接      传输结束必须断开连接      传输数据必须保证可靠 数据的可靠性:无重复.无丢失.无失序.无差错. 建立连接(三次握手): ...

  9. Linux :环境变量设置和本地变量加载

    bash: 全局变量: /etc/profile,  /etc/profile.d/*,  /etc/bashrc 个人变量: ~/.bash_profile,   ~/.bashrc bash运行方 ...

  10. 探索ASP.Net Core 3.0系列二:聊聊ASP.Net Core 3.0 中的Startup.cs

    原文:探索ASP.Net Core 3.0系列二:聊聊ASP.Net Core 3.0 中的Startup.cs 前言:.NET Core 3.0 SDK包含比以前版本更多的现成模板. 在本文中,我将 ...