夹角余弦(Cosine)

也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:


(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

       类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。


  即:


       余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向更加吻合,则越相似。当两个向量的方向完全相反夹角余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度与向量的幅值无关,只与向量的方向相关。

import numpy as np
x=np.random.random(10)
y=np.random.random(10) #方法一:根据公式求解
d1=np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y)) #方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=1-pdist(X,'cosine')

两个向量完全相等时,余弦值为1,如下的代码计算出来的d=1。

d=1-pdist([x,x],'cosine')

皮尔逊相关系数(Pearson correlation)

(1) 皮尔逊相关系数的定义

前面提到的余弦相似度只与向量方向有关,但它会受到向量的平移影响,在夹角余弦公式中如果将 x 平移到 x+1, 余弦值就会改变。怎样才能实现平移不变性?这就要用到皮尔逊相关系数(Pearson correlation),有时候也直接叫相关系数

如果将夹角余弦公式写成:

表示向量x和向量y之间的夹角余弦,则皮尔逊相关系数则可表示为:

皮尔逊相关系数具有平移不变性和尺度不变性,计算出了两个向量(维度)的相关性。

在python中的实现:'

import numpy as np
x=np.random.random(10)
y=np.random.random(10) #方法一:根据公式求解
x_=x-np.mean(x)
y_=y-np.mean(y)
d1=np.dot(x_,y_)/(np.linalg.norm(x_)*np.linalg.norm(y_)) #方法二:根据numpy库求解
X=np.vstack([x,y])
d2=np.corrcoef(X)[0][1]

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

Python 余弦相似度与皮尔逊相关系数 计算的更多相关文章

  1. java算法(1)---余弦相似度计算字符串相似率

    余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据 ...

  2. 【Math】余弦相似度 和 Pearson相关系数

    http://cucmakeit.github.io/2014/11/13/%E4%BF%AE%E6%AD%A3%E4%BD%99%E5%BC%A6%E7%9B%B8%E4%BC%BC%E5%BA%A ...

  3. Spark/Scala实现推荐系统中的相似度算法(欧几里得距离、皮尔逊相关系数、余弦相似度:附实现代码)

    在推荐系统中,协同过滤算法是应用较多的,具体又主要划分为基于用户和基于物品的协同过滤算法,核心点就是基于"一个人"或"一件物品",根据这个人或物品所具有的属性, ...

  4. 皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)

    之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Corre ...

  5. Python简单实现基于VSM的余弦相似度计算

    在知识图谱构建阶段的实体对齐和属性值决策.判断一篇文章是否是你喜欢的文章.比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知 ...

  6. 【Python学习笔记】使用Python计算皮尔逊相关系数

    源代码不记得是哪里获取的了,侵删.此处博客仅作为自己笔记学习. def multipl(a,b): sumofab=0.0 for i in range(len(a)): temp=a[i]*b[i] ...

  7. 皮尔逊相关系数的计算(python代码版)

    from math import sqrt def multipl(a,b): sumofab=0.0 for i in range(len(a)): temp=a[i]*b[i] sumofab+= ...

  8. python计算余弦复杂度

    import numpy as np from sklearn.metrics.pairwise import cosine_similarity a = np.array([1, 2, 3, 4]) ...

  9. 余弦相似度及基于python的三种代码实现、与欧氏距离的区别

    1.余弦相似度可用来计算两个向量的相似程度 对于如何计算两个向量的相似程度问题,可以把这它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向.两条线段之间形成一个夹角, ...

随机推荐

  1. React 项目中修改 Ant Design 的默认样式(Input Checkbox 等等

    修改样式更符合项目的需求特别是在 Input 和 Checkbox 等等一系列 试过很的方式都有问题, 比如直接在行内添加样式会无法传递到特定的层级 最好的办法是添加 id 可行 渲染部分代码 < ...

  2. LeetCode_1114.按顺序打印(多线程)

    LeetCode_1114 LeetCode-1114.按顺序打印 我们提供了一个类: public class Foo { public void one() { print("one&q ...

  3. LeetCode_509.斐波那契数

    LeetCode-cn_509 509.斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) ...

  4. 测试版和正式版微信小程序共享存储空间问题

    一般习惯将变量存储在小程序的storage缓存中,然后用到的时候再去取.但是有一次我在做小程序相关内容的时候发现,对于苹果手机,测试版本小程序和正式版本小程序的缓存变量是相互通用的.

  5. jprofiler监控wls&was配置

    jprofiler简介: jprofiler的内存视图部分可以提供动态的内存使用状况更新视图和显示关于内存分配状况信息的视图.所有的视图都有几个聚集层并且能够显示现有存在的对象和作为垃圾回收的对象. ...

  6. Selenium IDE安装及环境搭建教程

    摘自https://blog.csdn.net/ywyxb/article/details/59103683 Selenium IDE环境部署- Firefox浏览器Firefox-ESR版本下载(推 ...

  7. JavaScript基础篇详解

    全部的数据类型: 基本数据类型: undefined Number Boolean null String 复杂数据类型: object ①Undefined: >>>声明但未初始化 ...

  8. 测开之路一百四十九:jinja2模板之宏

    jinja2是python的模板引擎, 在写python web使用的过程中,macro可以节省大量的代码 比如上一篇的渲染页面 <!DOCTYPE html><html lang= ...

  9. Debian或者Ubuntu中安装secureCRT/secureFX

    1.官网下载 ubuntu 下的 xx.deb安装包.此处使用的安装包是scrt-sfx-8.5.4-1942.ubuntu16-64.x86_64.deb,点击下载,提取码:5em3. 2.安装 d ...

  10. pycharm运行正确但是不出结果

    描述:之前用的好好的,突然有一天用pycharm运行程序,明明结果正确, 打印不出来结果,看下图 解决: 查看File Transfer有好多错误,意思是没有连接上服务器 [2018/12/8 21: ...