1.spark是什么

快速、通用、可扩展的分布式计算引擎。

2. 弹性分布式数据集RDD

RDD(Resilient Distributed Dataset),是Spark中最基本的数据抽象结构,表示一个不可变、可分区、里面元素可以并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

RDD的属性
  1. 一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。
  2. 一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。
  3. RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
  4. 一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。
  5. 一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。
创建RDD的两种方式

1、由一个已经存在的Scala集合创建。

 

val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))

2、由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等

  val rdd2 = sc.textFile("hdfs://node1.itcast.cn:9000/words.txt")

3. Spark的算子

RDD中的所有转换都是延迟加载的,也就是说,它们并不会直接计算结果。相反的,它们只是记住这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给Driver的动作时,这些转换才会真正运行。这种设计让Spark更加有效率地运行。
  1. Transformation
  2. Action

4. RDD的依赖关系

RDD和它依赖的父RDD(s)的关系有两种不同的类型,即宽依赖(wide depedency)和窄依赖(narrow dependency)。

Spark官方的推荐是,给集群中的每个cpu core设置2~3个task。

比如说,spark-submit设置了executor数量是10个,每个executor要求分配2个core,那么application总共会有20个core。此时可以设置new SparkConf().set("spark.default.parallelism", "60")

来设置合理的并行度,从而充分利用资源。

参考:

Spark原理小总结

Spark分区数,task数目,core数,worker节点个数,excutor数量梳理

如何确定Kafka的分区数、key和consumer线程数

Spark Core性能优化总结

spark内核揭秘-14-Spark性能优化的10大问题及其解决方案

Spark RDD理解-总结的更多相关文章

  1. Spark RDD理解

    目录 ----RDD简介 ----RDD操作类别 ----RDD分区 ----宽依赖和窄依赖作用 ----RDD分区划分器 ----RDD到调度 返回顶部 RDD简介 RDD是弹性分布式数据集(Res ...

  2. [bigdata] Spark RDD整理

    1. RDD是什么RDD:Spark的核心概念是RDD (resilient distributed dataset),指的是一个只读的,可分区的弹性分布式数据集,这个数据集的全部或部分可以缓存在内存 ...

  3. Spark RDD aggregateByKey

    aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark. ...

  4. Spark RDD概念学习系列之RDD的转换(十)

    RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...

  5. Spark RDD概念学习系列之RDD的checkpoint(九)

     RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点?  答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...

  6. Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)

    RDD的依赖关系?   RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...

  7. Spark RDD整理

    参考资料: Spark和RDD模型研究:http://itindex.net/detail/51871-spark-rdd-模型 理解Spark的核心RDD:http://www.infoq.com/ ...

  8. Spark RDD概念学习系列之rdd持久化、广播、累加器(十八)

    1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/loca ...

  9. Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)

    本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...

随机推荐

  1. LU分解法求逆矩阵 C语言实现

    最近在网上找了下,没有找到我想要的C语言版本,找到的也是错误的.故自己写了一个,并进行了相关测试,贴出来分享. 具体的LU分解算法就不细说了,随便找本书就知道了,关键是分解的处理流程,细节特别容易出错 ...

  2. AcWing:108. 奇数码问题(归并排序 + 逆序数)

    你一定玩过八数码游戏,它实际上是在一个3×3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3×3的网格中. 例如: 5 2 8 1 3 _ 4 6 7 在游戏过程中,可以把空格与其上 ...

  3. js几种加密方法

    1.base64加密 它的github地址:https://github.com/dankogai/js-base64 <!DOCTYPE HTML> <html> <h ...

  4. 前端性能优化 —— reflow(回流/重排)和repaint(重绘)

    简要:整个在浏览器的渲染过程中(页面初始化,用户行为改变界面样式,动画改变界面样式等)reflow(回流)和repaint(重绘) 会大大影响web性能,尤其是手机页面.因此我们在页面设计的时候要尽量 ...

  5. sqli-labs(41) and 两php函数的讲解

    0X01 构造闭合 发现 不需要闭合 直接构造 id=- union ,database(), 成功 注入 0X02 堆叠注入同道理 一样的 这里我们来了解一下这个函数 mysqli_multi_qu ...

  6. RedisTemplate与zset

      Redis 数据结构简介 Redis 可以存储键与5种不同数据结构类型之间的映射,这5种数据结构类型分别为String(字符串).List(列表).Set(集合).Hash(散列)和 Zset(有 ...

  7. Spring Data概览

    总结:JpaRepository继承PagingAndSortingRepository,PagingAndSortingRepository继承CrudRespository,CrudResposi ...

  8. springboot+aop+自定义注解,打造通用的全局异常处理和参数校验切面(通用版)

    一.引入相应的maven依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifa ...

  9. SpringBoot整合kafka(安装)

    项目路径:https://github.com/zhaopeng01/springboot-study/tree/master/study_14 序言 Kafka 是一种高吞吐的分布式发布订阅消息系统 ...

  10. C++类继承方式及实践

    直接上图: 以及: 实践如下: #include <iostream> using namespace std; class Father{ private: int father1; i ...