[CSP-S模拟测试]:毛二琛(DP)
题目描述
$MYC$在$NOI2018$中,遇到了$day1T2$这样一个题,题目是让你求有多少“好”的排列。$MYC$此题没有获得高分,感到非常惭愧,于是回去专心研究排列了。如今数排列的题对$MYC$来说已经是小菜一碟了。于是$MYC$想考考你,扔给你了一个非常$naive$的数排列题给你。
给定一个$\{0,1,2,3,...,n-1\}$的排列$p$。一个$\{0,1,2,...,n-2\}$的排列$q$被认为是优美的排列,当且仅当$q$满足下列条件:
对排列$s=\{0,1,2,3,...,n-1\}$进行$n–1$次交换。
$1.$交换$s[q_0],s[q_0+1]$
$2.$交换$s[q_1],s[q_1+1]$
...
最后能使得排列$s=p$。
问有多少个优美的排列,答案对$10^9+7$取模。
原题见:$SRM517-600$
输入格式
第一行一个正整数$n$。
第二行$n$个整数代表排列$p$。
输出格式
仅一行表示答案。
样例
样例输入:
3
1 2 0
样例输出:
1
数据范围与提示
样例解释:
$q=\{0,1\}\{0,1,2\}\rightarrow\{1,0,2\}\rightarrow\{1,2,0\}$
$q=\{1,0\}\{0,1,2\}\rightarrow\{0,2,1\}\rightarrow\{2,0,1\}$
数据范围:
$20\%$:$n\leqslant 10$
$50\%$:$n\leqslant 50$
$70\%$:$n\leqslant 300$
$100\%$:$n\leqslant 5,000$
题解
题目可以转化为:一个大小为$n-1$的排列,某些地方限制了相邻两数的大小关系,求方案数。
考虑$DP$,设$dp[i][j]$表示进行到了第$i$个数,第$i$个数在前$i$个数中是第$j$小的方案数。
可以预处理出来哪些位置需要往左或右移即可。
注意一些限制,以向左移为例,第$i$次交换的位置要在第$i-1$次交换之前,反之同理。
这样做出来时间复杂度是$\Theta(n^3)$的,前缀和优化即可。
因为数据点没有给不满足的情况,所以下面代码中没有判不满足的情况,即$pos_i=i$。
时间复杂度:$\Theta(n^2)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=1000000007;
int n;
int a[5001];
bool com[5001];
long long dp[5001][5001],g[5001][5001];
long long ans;
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++)
if(i<a[i]){com[i-1]=1;com[a[i]-1]=1;}
else for(int j=a[i];j<i-1;j++)com[j]=1;
dp[0][1]=g[0][1]=1;
for(int i=1;i<n-1;i++)
for(int j=1;j<=i+1;j++)
{
if(com[i-1])dp[i][j]=(dp[i][j]+g[i-1][i]-g[i-1][j-1]+mod)%mod;
else dp[i][j]=(dp[i][j]+g[i-1][j-1])%mod;
g[i][j]=(g[i][j-1]+dp[i][j])%mod;
}
for(int i=1;i<n;i++)ans=(ans+dp[n-2][i])%mod;
printf("%lld",ans);
return 0;
}
rp++
[CSP-S模拟测试]:毛二琛(DP)的更多相关文章
- 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)
A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...
- [CSP-S模拟测试]:毛三琛(随机化+二分答案)
题目传送门(内部题69) 输入格式 第一行正整数$n,P,k$.第二行$n$个自然数$a_i$.$(0\leqslant a_i<P)$. 输出格式 仅一个数表示最重的背包的质量. 样例 样例输 ...
- [CSP-S模拟测试]:毛一琛(meet in the middle)
题目描述 历史学考后,$MYC$和$ztr$对答案,发现选择题他们没有一道选的是一样的.最后他们都考了个$C$.现在问题来了,假设他们五五开,分数恰好一样(问答题分数也恰好一样,只考虑选择题).已知考 ...
- NOIP 模拟 $30\; \rm 毛二琛$
题解 \(by\;zj\varphi\) 原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案. 设 \(dp_{i,j}\) 表示在前 \(i\) 个数中,第 \(i\) 个的排名 ...
- [CSP-S模拟测试]:w(树上DP)
题目背景 $\frac{1}{4}$遇到了一道水题,双完全不会做,于是去请教小$D$.小$D$看了${0.607}^2$眼就切掉了这题,嘲讽了$\frac{1}{4}$一番就离开了.于是,$\frac ...
- [CSP-S模拟测试]:B(期望DP)
题目传送门(内部题151) 输入格式 第一行一个整数$N$. 第二行$N$个整数,第$i$个为$a_i$. 输出格式 一行一个整数,表示答案.为避免精度误差,答案对$323232323$取模. 即设答 ...
- [CSP-S模拟测试]:密码(数位DP+库默尔定理)
题目描述 为了揭穿$SERN$的阴谋,$Itaru$黑进了$SERN$的网络系统.然而,想要完全控制$SERN$,还需要知道管理员密码.$Itaru$从截获的信息中发现,$SERN$的管理员密码是两个 ...
- [CSP-S模拟测试]:硬币(博弈论+DP+拓展域并查集)
题目传送门(内部题135) 输入格式 第一行包含一个整数$T$,表示数据组数. 对于每组数据,第一行两个整数$h,w$,表示棋盘大小. 接下来$h$行,每行一个长度为$w$的字符串,每个位置由为$o, ...
- [CSP-S模拟测试]:军训队列(DP+乱搞)
题目描述 有$n$名学生参加军训,军训的一大重要内容就是走队列,而一个队列的不规整程度是该队中最高的学生的身高与最矮的学生的身高差值的平方.现在要将$n$名参加军训的学生重新分成$k$个队列,每个队列 ...
随机推荐
- python并发编程之进程池、线程池、协程
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...
- 如何有效的使用google进行搜索的20个技能
每天有数百万人因为各种各样的原因使用谷歌搜索.学生们把它用于学校,商人们把它用于研究,还有数百万人把它用于娱乐.但大多数人可能没有充分利用谷歌搜索的潜力. 想要更有效地使用谷歌搜索,并得到您想要的搜索 ...
- [Git] 024 log 命令的补充
0. 回顾 [Git] 009 逆转未来 的 "1" 画张导图 其实 --oneline 前有个"关键字参数" "--pretty" --o ...
- getchar、putchar、puts、gets
getchar(字符) 输入获取一个字符 putchar(字符) 输出控制台一个字符 scanf()格式化输入 printf() 格式化输出 gets(arr) 输入一个字符串给已经声明的数组ar ...
- 前端开发HTML&css入门——CSS&选择器练习
CSS 层叠样式表 (Cascading Style Sheets)css可以用来为网页创建样式表,通过样式表可以对网页进行装饰.所谓层叠,可以将整个网页想象成是一层一层的结构,层次高的将会覆盖层次低 ...
- 编辑SE16N表的函数
函数:SE16N_INTERFACE 此外还可以SE16N 输入对应的查询条件后执行debug该变量 GD-SAPEDIT = ‘X’ 和GD-EDIT = ‘X’ 来实现当前SE16N 中该表的编辑
- MySQL事务提交与回滚
提交 为了演示效果,需要打开两个终端窗口,使用同一个数据库,操作同一张表 step1:连接 终端1:查询商品分类信息 select * from goods_cates; step2:增加数据 终端2 ...
- ls, dir, vdir - 列目录内容
ls [选项] [文件名...] POSIX 标准选项: [-CFRacdilqrtu1] GNU 选项 (短格式): [-1abcdfgiklmnopqrstuxABCDFGLNQRSUX] [-w ...
- Redis 内存满了怎么办? Redis的内存淘汰策略
https://juejin.im/post/5d674ac2e51d4557ca7fdd70 Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限, ...
- 复试笔试复习 & bd面试总结
计算机网络: 1.OSI模型中提供端到端服务的是传输层 2.波特率的含义是每秒钟信号变化的次数 3.非屏蔽双绞线中5类网线的数据速率为100Mbps,连接器是RJ-45 4.虚电路在数据链路层实现,电 ...