重新网格化(Remesh)
Remesh并没有一个严格的定义,简单的讲,Remesh就是从一个输入网格生成另一个网格,并且满足一定的要求。根据网格改动大小,可以分为这么几类:
- 保持顶点拓扑和几何信息,优化网格连接关系
- 保持顶点拓扑信息,同时优化顶点几何和网格连接关系
- 顶点重采样,优化网格连接关系
Remesh对原网格的改动比较大,实际应用中要谨慎使用。尽量使用改动比较小的Remesh方法。
Delaunay三角化
Delaunay三角化,是点云的一种三角化方法,它具有某些好的性质:
- 网格中的最小角最大化
- 任意三角形的外接圆内不含三角形以外的顶点
- 三角化的网格是点云的凸包
- 最大化所有三角面片的内切圆的平均值
- 其它......


带约束的Delaunay三角化
有时候,点云包含一些线段连接约束,如下左图所示。有些约束边并不满足Denaulay性质,所以,它并不能得到整体的Delaunay三角化结果(如下中图是点云的一个Delaunay三角化结果)。我们可以放开一些Delaunay性质约束,使其尽量的接近Delaunay三角化。下右图是一个带约束的Denaulay三角化的结果。可以比较一下中图和右图的结果差异。

Delaunay网格优化
Delaunay优化,可以优化网格的连接关系,减少狭长三角形,保持网格顶点数目和位置不变。如下图所示,图2和图3是图1点云不同的三角化结果。图2经过一系列拓扑优化,如Delaunay边翻转操作,得到图3的高质量网格。
Delaunay优化只改变了网格顶点的连接关系,一般是局部的Delaunay边翻转。由于顶点保持不变,它可以极大可能的保持住原始网格的几何信息。缺点是,在顶点分布很差的情况下,优化的效果有限。

Voronoi图
给定一群平面(或曲面)的点,其Voronoi图,把平面(或者曲面)分隔成一块一块的区域,每个区域包含一个点,并且这块区域到所有点的最近点为其所包含的点。如图左所示。这些线也是相邻两点的垂直平分线。如果是曲面上的点,点之间的距离为曲面的测地距离。
Voronoi图和Delaunay三角化的图,互为对偶图。如图右所示。

重心Voronoi图
重心Voronoi图,是一种特殊的Voronoi图,其每个区域的重心和其对应点重合。如右图所示,这就是一个重心Voronoi图。

重心Voronoi优化
重心Voronoi优化,可以减少狭长三角形。它和Delaunay优化的区别是,它不仅优化网格顶点的连接关系,还要优化顶点的位置。如下图1所示,虽然这是一个Delaunay三角化,但明显可以看出其网格质量很很差的,经过一系列几何优化(如重心Voronoi优化)后,顶点分布更加均匀,然后再做一个Delaunay三角化就得到了图2的结果。
重心Voronoi优化,虽然可以优化顶点分布,但其优化程度有限,在顶点分布极不均匀的情况下,效果还是不理想的。

重新网格化(Remesh)
这里的Remesh,主要是指顶点重新采样的类型。前面提到的Delaunay优化和重心Voronoi优化也属于Remesh的范畴,但它们对顶点分布的优化能力有限。
Remesh的目标有很多种,一般是应用驱动的,不同的应用所需要的性质是有差别的,即使是同一个性质,有时候是硬约束,有时候是软约束。常见的一些性质有:
- 新网格是原网格的一个好的逼近
- 新网格复杂度(网格顶点或面片数量)
- 网格面片质量满足一定的要求:避免狭长和退化面片;顶点度数为6;顶点分布满足均匀分布或几何相关的各项异性分布;网格边长要求。
- 保持特征边
- 新网格要保持流形结构
通常情况下,这些性质很难同时满足,有些性质是矛盾的:
- 网格复杂度与逼近误差
- 网格顶点均匀分布与逼近误差
- 保持特征边与网格面片质量

Remesh的方法,大致可以分为局部和全局的:
- 局部方法:经过一系列的局部拓扑和几何操作的迭代,来Remesh整个网格。它的优点是计算速度比较快,容易实现;缺点是缺乏整体质量的把控,是一种启发式方法。
- 全局方法:一般指把网格分割成一片一片的,然后分片参数化子网格。参数化的过程中,保持住边界的连续性。也有一些全局参数化的方法,不要网格分割这一步。最后再把参数域的网格拓扑结构反映射回原网格。它的优点是网格的全局质量容易把控,缺点也显而易见,强烈的依赖参数化方法,稳定高质量的实现会比较困难。
有兴趣的读者,欢迎参考视频版本:Delaunay三角化;Voronoi图
重新网格化(Remesh)的更多相关文章
- 利用Matlab生成一个网格化的三维球面(生成直角坐标)
利用Matlab生成一个网格化的三维球面,分别对径向方向.经度方向和纬度方向进行网格化,代码如下: %生成一个笛卡尔坐标系下球面网格的x,y,z坐标 %r为球面距离 %nJingdu,nWeidu分别 ...
- 正六边形网格化(Hexagonal Grids)原理与实现
在路径规划.游戏设计栅格法应用中,正六边形网格不如矩形网格直接和常见,但是正六边形具有自身的应用特点,更适用于一些特殊场景中,比如旷阔的海洋.区域或者太空.本文主要讲述如何对正六边形进行几何学分析.网 ...
- Unity 环境区域网格化
在使用A星算法和物体布局的过程中,常常会使用的网格的概念,即建立在网格的基础上,会使得游戏的相关编程变得简单的多. 格子的代码: using System.Collections; using Sys ...
- 使用 UICollectionView 实现网格化视图效果
讲解 UICollectionView 的相关链接:http://blog.csdn.net/eqera/article/details/8134986 关键操作: 效果如下: KMCollectio ...
- 社区管理有捷径!Wish3D Earth社区网格化管理案例重磅上线
社区网格化是精细化.全覆盖.高效率的社区管理模式,便捷有效的社区网格化管理平台是社区网格化管理的关键. Wish3D Earth全新上线三维社区网格化管理平台,使用实景三维模型作为地图,地形地貌真实展 ...
- webgis技术在智慧城市综合治理(9+X)网格化社会管理平台(综治平台)的应用研究
综治中心9+X网格化社会管理平台 为落实中央关于加强创新社会治理的要求,适应国家治理体系和治理能力现代化要求,以基层党组织为核心,以整合资源.理顺关系.健全机制.发挥作用为目标,规范街道.社区综治中心 ...
- webgis技术在智慧城市综合治理网格化社会管理平台(综治平台)的应用
网格化社会管理平台功能:1 实有人口管理人口数据管理按照人口分类进行管理,分为常住人口.流动人口.特殊人群.弱势群体,功能包括人口信息管理.归口负责.人房关联.统计汇总.地图监管服务等功能.人口信 ...
- 点云网格化算法---MPA
MPA网格化算法思路 第一步:初始化一个种子三角面.(随机选点,基于该点进行临近搜索到第二点:在基于该线段中点临近搜索到第三点) 图1 第二步:在种子三角面的基础上,进行面片的扩充,利用边的中点进行临 ...
- 利用Matlab生成一个网格化的三维三轴椭球面(生成直角坐标)
代码很简单,a,b,c分别为椭球的三轴轴长,a=b=c时得到的是三维球面,a=b!=c时得到的是三维椭球面,a!=b且a!=c且b!=c时得到的是三维旋转椭球面 %生成一个笛卡尔坐标系下三轴椭球表面的 ...
随机推荐
- volatile关键字解决线程间内存共享变量同步的问题,让变量可以立即同步。
- Linux性能分析命令工具汇总
转自:http://rdc.hundsun.com/portal/article/731.html?ref=myread 出于对Linux操作系统的兴趣,以及对底层知识的强烈欲望,因此整理了这篇文章. ...
- ZOJ3471Most Powerful(状态压缩)
问题 Recently, researchers on Mars have discovered N powerful atoms. All of them are different. These ...
- poj2166 Heapsort[构造递推]
构造一个n个点的大根堆让全部弹出时交换位置次数最多. 真心佩服我自己智商,这种题都做不出来 交换是在每次弹出堆顶,然后把堆尾元素置于堆顶,然后向下调整时产生的.玩样例可以发现似乎数字1每次都出现在堆最 ...
- 原生js实现Ajax请求,包含get和post
现在web从服务器请求数据,很多用到Ajax,不过都是用的JQuery封装好的,之前做项目,由于无法引用JQuery,所以就只能用原生了,话不多说,请看代码. /*------------------ ...
- Python天天学_03_基础三
Python_day_03 金角大王: http://www.cnblogs.com/alex3714/articles/5740985.html ------Python是一个优雅的大姐姐 学习方式 ...
- 论文阅读:Forwarding Metamorphosis: Fast Programmable Match-Action Processing in Hardware for SDN
摘要: 在软件定义网络中,控制平面在物理上与转发平面分离,控制软件使用开放接口(例如OpenFlow)对转发平面(例如,交换机和路由器)进行编程. 本文旨在克服当前交换芯片和OpenFlow协议的两个 ...
- R_Studio(教师经济信息)逻辑回归分析的方法和技巧
使用R语言对"教师经济信息"进行逻辑回归分析 (1)按3:1的比例采用简单随机抽样方法,创建训练集和测试集 (2)用训练集创建逻辑回归模型 (3)用测试集预测贷款结果,并用tabl ...
- R_Studio(癌症)数据连续属性离散化处理
对“癌症.csv”中的肾细胞癌组织内微血管数进行连续属性的等宽离散化处理(分为3类),并用宽值找替原来的值 癌症.csv setwd('D:\\data') list.files() dat=read ...
- Vue源码阅读一:说说vue.nextTick实现
用法: 在下次 DOM 更新循环结束之后执行延迟回调.在修改数据之后立即使用这个方法,获取更新后的 DOM. 疑惑: 怎么实现的延迟回调 原理: JavaScript语言的一大特点就是单线程,同一个时 ...